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Portfolio Management
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Mean-Variance Portfolio

Definition (Mean-variance portfolio)
Given p risky assets with mean r ∈ Rp and covariance Σ ∈ Rp×p, the
mean-variance portfolio optimizes the allocation vector w:

w∗ = argminw∈Rp w⊤Σw s. t. w⊤µ = µ0.

Here, we denote by µ = r− r01 the excess return of the risky assets,
and µ0 > 0 is the targeted excess return of the portfolio.

The solution is w∗ ∝ Σ−1µ.
We assume µ is known and Σ needs to be estimated.
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Ridge Regularized Mean-Variance Portoflio

ℓ2-Regularized-MV: Consider the optimization with regularization Q:

w∗ = argminw∈Rp w⊤(Σ̂+Q)w s. t. w⊤µ = µ0,

where Q is positive definite. The optimal w∗ satisfies

w∗ ∝ (Σ̂+Q)−1µ.

OOS Sharpe Ratio of w∗:

SR(Q) =
E
R̃
[w∗⊤(R̃− r01)]√

Var
R̃
[w∗⊤(R̃− r01)]

=
µ⊤(Σ̂+Q)−1µ√

µ⊤(Σ̂+Q)−1Σ(Σ̂+Q)−1µ
,

where R̃ is an out-of-sample point with mean r = µ+ r01 and cov Σ.
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Open Problems

⋆Is it possible to estimate the out-of-sample Sharpe ratio with some
regularization using in-sample data?

⋆Can we then optimize the estimator over the regularization parameter
to enhance the out-of-sample Sharpe ratio?
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In-sample Optimism

How about we just use Σ̂ to estimate Σ in SR(Q)?
Assume n iid p-dim return vectors Ri ∼ N(µ,Σ), i = 1, . . . , n, µ is
known and p/n → c < 1.
The optimized MV portfolio with Q = 0 is based on the sample
covariance Σ̂ = 1

n

∑n
i=1(Ri − µ)(Ri − µ)⊤, i.e. w∗ ∝ Σ̂−1µ.

Its in-sample SR is
√
µ⊤Σ̂−1µ while its out-of-sample SR is

µ⊤Σ̂−1µ/

√
µ⊤Σ̂−1ΣΣ̂−1µ.

Our theorem will show the latter is approximately

(1− c)

√
µ⊤Σ̂−1µ, so the in-sample SR is 1/(1− c) times larger.

When c is close to 1, the portfolio performance will be significantly
exaggerated.
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Estimating OOS Sharpe
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Assumptions

1 Observed sample data R ∈ Rn×p satisfies

R = 1nr
⊤ +X,

where X = ZΣ
1
2 ∈ Rn×p. The elements in Z ∈ Rn×p are i.i.d zero

mean, variance 1 and finite (8 + ε)-order moment for some ε > 0.
2 The portfolio dimension p and the sample size n both tend to

infinity, with p/n → c > 0.
3 There exist constants cQ, CQ > 0 such that cQ ≤ λmin(Q) and

∥Σ− 1
2QΣ− 1

2 ∥op ≤ CQ for any sequences (n, p). In addition, we
allow Q = 0 when c < 1.
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Assumptions

4 Σ is well scaled as ∥Σ/p∥tr ≤ C for some constant C > 0. Denote
by λ1 ≥ · · · ≥ λp the eigenvalues of Σ. λp ≥ c1 for some constant
c1 > 0. One of the following cases must hold:
(a) (Bounded spectrum) There exists C1 > 0 such that λ1 ≤ C1.
(b) (Arbitrary number of diverging spikes when c < 1) p/n → c < 1 and

we allow arbitrary number of top eigenvalues to go to infinity.
(c) (Fixed number of diverging spikes when c ≥ 1) p/n → c ≥ 1 and we

let the number of diverging spikes be K, K is fixed and λ1 ≤ Cλ2
K

for some constant C > 0.
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Factor models

yjt = λ′
j ft + ujt, j = 1, ..., p, t = 1, ..., T or n , ft ∈ RK .

Matrix form: Y = ΛF′ +U . E ft = 0, Eujt = 0.

= +p

T K T

Y U⇤

T

F 0

# Time Points # Experiments

# 
St

oc
ks

# 
G

en
es

# 
Vo

xe
ls

# Brain Scans
Observed Panel Loadings Factors  Residuals
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Factor models

yjt = λ⊤
j ft + ujt, j = 1, ..., p, t = 1, ..., T or n , ft ∈ RK .

Vector form: yt = Λ ft + ut.
Covariance structure: Σ = Cov(yt) = ΛCov(ft)Λ

⊤ +Cov(ut).
Typically, we assume Cov(ut) is a diagonal matrix (strict factor
model) and Cov(ft),Cov(ut) are well-conditioned.
For j ≤ K, λj(Σ) ≍ λj(ΛCov(ft)Λ

⊤) ≍ λj(ΛΛ⊤) ≍ λj(Λ
⊤Λ)

≍ λj(
∑p

j=1 λjλ
⊤
j ) ≍ p by law of large numbers.

For j > K, λj(Σ) ≍ λj(Cov(ut)) ≍ 1.
Therefore, we have fixed number K of diverging spikes with λj ≍ p
as p → ∞.
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Sharpe Estimation

Define the following quantities:

Tn,1(Q) = tr

[(
X⊤X
n

+Q

)−1

A

]
,

Tn,2(Q) = tr

[(
X⊤X
n

+Q

)−1

Σ

(
X⊤X
n

+Q

)−1

A

]
,

for some deterministic matrix A ∈ Rp×p.

By setting A = µµ⊤, Sharpe Ratio (SR) could be expressed as

SR(Q) =
Tn,1(Q)√
|Tn,2(Q)|

.
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Sharpe Estimation

Theorem

Suppose Assumptions 1-4 hold. For any given Q, a good estimator ŜR(Q) for
SR(Q) is as follows.

ŜR(Q) =
Tn,1(Q)√∣∣T̂n,2(Q)

∣∣
, where T̂n,2(Q) =

tr(Σ̂+Q)−1Σ̂(Σ̂+Q)−1A
(
1− c

p trΣ̂(Σ̂+Q)−1
)2 .

If A is semi-positive definite, it holds that

ŜR(Q)/SR(Q)
a.s→ 1.

If additionally ∥A∥tr is bounded, then SR(Q) is almost surely bounded and

ŜR(Q)− SR(Q)
a.s→ 0.
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Simulations: Sharpe Estimation

1 Fix n = 1500, consider p = 750 (ratio c = 1/2) and p = 2250 (ratio
c = 3/2).

2 Σ = diag(λ1, . . . , λp) + 2 · 11⊤, where {λi}pi=1 are generated from a
truncated Γ−1(1, 1) distribution, truncated with the interval [0.01, 9],
and then ranked in decreasing order.

3 r0 = 0, µ =
√
5/p · (1(S+)− 1(S−)) ∈ Rp. S+ and S− are randomly

selected subsets of [p] with |S+| = |S−| = p/10 and S+ ∪ S− = ∅.
4 Q = q ·Q0 where Q0 = diag(3, ..., 3, 1, ..., 1), where the numbers of 3 and

1 entries are both p/2. We will vary q.

5 Repeat 1000 times.
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Simulations: Sharpe Estimation
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Figure 1: Simulation results in the basic settings. Figure 1a shows the case when c = 1/2
and Figure 1b depicts the case when c = 3/2. The x-axis corresponds to different q values,
and the y-axis is the value of SR. The black solid line connects the values of SR(q ·Q0),
while the solid points represent the proposed statistics ŜR(q ·Q0).
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Simulations: Sharpe Estimation
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Figure 2: Simulation results with increasing n. Figures 2a-2d and Figures 2e-2h correspond
to c = 1/2 and c = 3/2. Figures 2a, 2e show

∑1000
b=1 (SRb(q ·Q0)− ŜRb(q ·Q0))2/1000 for

different q’s. Figures 2b, 2f show
∑1000

b=1 (SRb(q ·Q0)/ŜRb(q ·Q0)− 1)2/1000 for different
q’s. Figures 2c, 2g give boxplot of argmaxq SRb(q ·Q0)− argmaxq ŜRb(q ·Q0) for different
n’s. Figures 2d, 2h give boxplot of maxq SRb(q ·Q0)−maxq ŜRb(q ·Q0) for different n’s.
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Extension 1:

Estimating Efficient Frontier
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Efficient Frontier

When No Risk-free Asset: Given target return µ0 > 0, the regularized
portfolio optimization is given by

w∗ = argmin
w

w⊤(Σ̂+Q)w, s.t. w⊤r = µ0 and w⊤1 = 1.

The optimal w∗ is given by w∗ = g + µ0 · h, where

g = D−1
[
B(Σ̂+Q)−11 −A(Σ̂+Q)−1r

]
,

h = D−1
[
C(Σ̂+Q)−1r−A(Σ̂+Q)−11

]
,

A = r⊤(Σ̂+Q)−11, B = r⊤(Σ̂+Q)−1r,

C = 1⊤(Σ̂+Q)−11, D = BC −A2.

Efficient Frontier: The curve (σ0, µ0) as we change target return µ0, where

σ2
0 = w∗⊤Σw∗ = (g + µ0 · h)⊤Σ(g + µ0 · h),

is the variance. Our objective is to estimate σ0 for any given Q and µ0.
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Efficient Frontier

Efficient Frontier with known Σ :

σ2
0 = (g + µ0 · h)⊤Σ(g + µ0 · h) = g⊤Σg + 2µ0g

⊤Σh+ µ2
0h

⊤Σh.

When we know true Σ, we use Σ instead of Σ̂+Q in g,h, A,B,C,D. Then
the above is equivalent to

Cσ2
0 − C2/D · (µ0 −A/C)2 = 1. (Hyperbola)
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Assumptions

5 Let s0 > 0 to be the unique solution of the equation.

s0 =
c

p
tr Σ

(
Σ

1 + s0
+Q

)−1

.

Define

Arr = r⊤
(

Σ

1 + s0
+Q

)−1

r,

Ar1 = r⊤
(

Σ

1 + s0
+Q

)−1

1,

A11 = 1⊤
(

Σ

1 + s0
+Q

)−1

1.

There exists a constant ρ < 1 such that A2
r1/(A11Arr) ≤ ρ < 1.
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Efficient Frontier Estimation

Theorem

Suppose that Assumptions 1-5 hold. Define

σ̂2 =
(g + µ0h)

⊤Σ̂(g + µ0h)

(1− c/p · trΣ̂(Σ̂+Q)−1)2
,

where g and h are defined as before, it holds that

σ̂2/σ2
0

a.s→ 1.

Moreover, the following properties hold:

1 If Arr is bounded, for any r0 = O(µ0) it holds that µ0−r0
σ0

− µ0−r0
σ̂

a.s→ 0.

2 If µ0 ≤ C
√
Arr for some C > 0, then σ̂2 − σ2

0
a.s→ 0.
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Simulations: Efficient Frontier Estimation

1 Fix n = 1500, consider p = 750 (ratio c = 1/2) and p = 2250 (ratio
c = 3/2).

2 Generate ξ ∈ Rp i.i.d. Γ(1, 1). Σ = diag(λ1, . . . , λp) + 2 · 11⊤ + ξξ⊤. Σ
respresents a covariance matrix with two factors.

3 r0 = 0, the mean vector µ here has two choices: µ = µ1 = p
1
4µ0 + 2 · 1

and µ = µ2 = µ0 + 2 · 1+ ξ. Arr becomes unbounded when µ = µ1,
while it remains bounded when µ = µ2.

4 Q = 0.2 ·Q0.

5 µ0 ranges from 0.2 to 6 with the increment of 0.2.

6 Repeat 1000 times.
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Simulations: Efficient Frontier Estimation
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Figure 3: Efficient frontiers of w∗. The x-axis is the volatility level, and the y-axis is the
target return µ0. The solid line characterizes the curve of (µ0, σ0), while the solid points
represent the points in the curve of (µ0, σ̂).
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Simulations: Efficient Frontier Estimation
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Figure 4: Simulation results with increasing n. x-axis in all figures shows different values
of µ0. Figures 4a-4d show

∑1000
b=1 (σ̂2

b/σ
2
0,b − 1)2/1000. Figures 4e-4h show∑1000

b=1 (σ̂2
b − σ2

0,b)
2/1000.
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Extension 2:

Optimization Over Q
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Interesting Questions

⋆Q1: Given the maximum OOS Sharpe SRmax =
√
µ⊤Σ−1µ, can

SR(Q) approach SRmax? How to predetermine the structure of Q?

⋆Q2: Can we optimize Q from ŜR(Q)? Define Q̂ = argmaxQ ŜR(Q),
will the performance of SR(Q̂) be good?
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Answers of Q1

Theorem

Suppose that Assumptions 1-4 hold. Then for any given ε > 0, there exists
deterministic sequences of matrices Q̃ ∈ Rp×p such that with probability 1,

1− ε ≤ lim
n→+∞

SR(Q̃)/SRmax ≤ 1.

Key of Proof: The existence of Q̃ is proved by letting Q̃ = CΣ for some
constant C large enough.
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Simulations: Different Structure of Q

1 Fix n = 1500, consider p = 750 (ratio c = 1/2) and p = 2250 (ratio
c = 3/2).

2 Σ = diag(λ1, . . . , λp) + 2 · 11⊤, where {λi}pi=1 are generated from a
truncated Γ−1(1, 1) distribution, truncated with the interval
[0.01, 9], and then ranked in decreasing order.

3 r0 = 0, µ =
√

5/p · (1(S+)− 1(S−)) ∈ Rp. S+ and S− are
randomly selected subsets of [p] with |S+| = |S−| = p/10 and
S+ ∪ S− = ∅.

4 Let Q0 = diag(3, ..., 3, 1, ..., 1), where the numbers of 3 and 1
entries are both p/2. Define Q1 = 0.1Q0 + q · diag(λ1, ..., λp);
Q2 = 0.5Ip + qQ0 and Q3 = qΣ. We will vary q.

5 Repeat 1000 times.
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Simulations: Different Structure of Q
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ŜR(Q)

(f) Q = Q3, c = 3/2

Figure 5: Simulation results with different Q’s.
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Answers of Q2 with Numerical Results

Table 1: Comparison for SR(Q̂) and ŜR(Q̂). The mean gives the average
value and the range gives the minimum and maximum values over the 20
independent trials.

(n, p) SRmax
Optimization over full Q

mean of SR(Q̂) Range of SR(Q̂) mean of ŜR(Q̂) Range of ŜR(Q̂)
(500, 250) 0.923 0.643 [0.604,0.694] 1.299 [1.178,1.454]
(1000, 500) 1.123 0.791 [0.738,0.824] 1.513 [1.406,1.578]

(n, p) SRmax
Optimization over diagonal Q

mean of SR(Q̂) Range of SR(Q̂) mean of ŜR(Q̂) Range of ŜR(Q̂)
(500, 250) 0.923 0.770 [0.715,0.818] 0.967 [0.909,1.056]
(1000, 500) 1.123 0.944 [0.912,0.979] 1.146 [1.081,1.224]

Primary Reason: Q̂ is overfitted to in-sample data, breaking down the
independence between Σ̂ and Q.
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Assumptions

6 There exists universal constants l, L > 0 such that for all Q ∈ Q,
both SR(Q) and ŜR(Q) satisfy l ≤ SR(Q), ŜR(Q) ≤ L almost
surely for all n large enough.

7 There exists a sequence of bijections ϕn : B → Q, where B ⊂ Rk is
a fixed compact set (independent of n) for some constant k > 0.
Furthermore, the sequence {ϕn} is equicontinuous with respect to
the operator norm: for any ε > 0, there exists δ > 0 (independent
of n) such that for all n and all α,α′ ∈ B,

∥α−α′∥2 ≤ δ =⇒ ∥ϕn(α)− ϕn(α
′)∥op ≤ ε.

Remark: Q is the candidate set for Q. A specific example for Q is
ϕn(α) = α1Q1 + α2Q2 + · · ·+ αkQk where Q1, . . . ,Qk are
predetermined matrices with ∥Qj∥op bounded for all j, Qj are linearly
independent, and the coefficients α vary over a compact set in Rk.
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Consistency Results for Optimal Q

Theorem
Suppose that Assumptions 1-4 and 6-7 hold. Define

Q̂ = argmaxQ∈Q ŜR(Q).

It holds that

ŜR(Q̂)/SR(Q̂)
a.s→ 1, ŜR(Q̂)− SR(Q̂)

a.s→ 0.

Control of Overfitting Issues: When the search space for Q (Q) is well
behaved and restricted to a finite dimensional family, the overfitting issue can
be controlled, and the optimized candidate achieves consistent performance in
the large-sample limit.
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Extension 3:

Estimating with Sample Mean µ̂
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OOS Sharpe with Sample Mean µ̂

ℓ2-Regularized-MV: Consider the optimization with regularization Q:

w∗ = argminw∈Rp w⊤(Σ̂+Q)w s. t. w⊤µ̂ = µ0,

where Q is positive definite. The optimal w∗ satisfies

w∗ ∝ (Σ̂+Q)−1µ̂.

OOS Sharpe Ratio of w∗:

SR(Q) =
E
R̃
[w∗⊤(R̃− r01)]√

Var
R̃
[w∗⊤(R̃− r01)]

=
µ̂⊤(Σ̂+Q)−1µ√

µ̂⊤(Σ̂+Q)−1Σ(Σ̂+Q)−1µ̂
,

where R̃ is an out-of-sample point with mean r = µ+ r01 and cov Σ.
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Assumptions

8 Observed sample data R ∈ Rn×p satisfies

R = 1nr
⊤ +X,

where X = ZΣ
1
2 ∈ Rn×p. The elements in Z ∈ Rn×p are i.i.d zero

mean, variance 1 Gaussian random variables.
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Sharpe Estimation with µ̂

Theorem

Suppose Assumptions 2-4 and 8 hold. For any given Q, a good estimator
ŜR(Q) for SR(Q) is as follows.

ŜR(Q) =
µ̂⊤(Σ̂+Q)−1µ̂− tr(Σ̂+Q)−1Σ̂

n−tr(Σ̂+Q)−1Σ̂√
µ̂⊤(Σ̂+Q)−1Σ̂(Σ̂+Q)−1µ̂

·
(
1− c

p
trΣ̂(Σ̂+Q)−1

)
.

If ∥Σ− 1
2µ∥2 is bounded and µ⊤( Σ

1+s0
+Q)−1µ is lower bounded by some

constant, it holds that

ŜR(Q)/SR(Q)
a.s→ 1.
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Simulations: Sharpe Estimation with µ̂

1 Fix n = 1500, consider p = 750 (ratio c = 1/2) and p = 2250 (ratio
c = 3/2).

2 Σ = diag(λ1, . . . , λp) + 2 · 11⊤, where {λi}pi=1 are generated from a
truncated Γ−1(1, 1) distribution, truncated with the interval [0.01, 9],
and then ranked in decreasing order.

3 r0 = 0, µ0 =
√
5/p · (1(S+)− 1(S−)) ∈ Rp. S+ and S− are randomly

selected subsets of [p] with |S+| = |S−| = p/10 and S+ ∪ S− = ∅. For µ3,
we assume that each element follows an independent uniform
distribution, Unif(−

√
2/p,

√
2/p), µ4 = µ3 + 2 · 1p.

4 Q1 = q · diag(λ1, . . . , λp), Q2 = qΣ. We will vary q.

5 Repeat 1000 times.
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Simulations: Sharpe Estimation with µ̂
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ŜR(Q2)

SRL

(b) µ = µ3, c = 1/2

0 1 2 3 4 5 6
Value of q

1.3

1.4

1.5

1.6

V
al

ue
of

S
R

SRmax

SR(Q1)
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ŜR(Q2)

SRL

(e) µ = µ3, c = 3/2

0 5 10 15 20
Value of q

1.2

1.3

1.4

1.5

1.6

V
al

ue
of

S
R

SRmax

SR(Q1)
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Figure 6: SRmax =
√
µ⊤Σ−1µ, and SRL = SR2

max/
√

SR2
max + c.
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Real Data

Real Data Experiments
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Real Data: Mean-Variance Portfolio

After deleting stocks with missing values, we have p = 365 stocks.

Portfolios are built using historical data spanning 1, 2, 4 years, and
rebalanced monthly.

Each allocation vector w∗ is held for the entire future testing month. We
then have returns of the portfolio w∗ in each trading day of the month.

For now, we use OOS average return as µ in each testing month for
portfolio construction (known µ).

Repeat the procedure in a rolling fashion for all testing months from Jan
2013 to Jun 2023 and record daily returns for each trading day.
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Real Data: Mean-Variance Portfolio

1 Consider two candidate sets. Q1 = {q · Σ̂pre, q ∈ [1 : 30]/10}, where Σ̂pre

represents the sample covariance pre-trained from 2004 to 2008, not
overlapping with data for portfolio construction and evaluation.
Q2 = {q · Ip, q ∈ [1 : 30]/10}, where Ip is the identity matrix.

2 Calculate sample cov Σ̂ with 1,2,4-year historical data and construct the
regularized MV portfolio.

3 For each testing month, we run experiments for all candidate q values
and also consider no regularization, i.e. q = 0, where we have w ∝ Σ̂+µ
and Σ̂+ is the pseudo inverse, and the optimized q∗ ∈ Q using our
estimator. Note that q∗ changes from month to month.

4 We report the average Sharpe ratio of daily portfolio returns over the
future three years.
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Real Data: Mean-Variance Portfolio
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Figure 7: SR of mean-variance portfolios. The x-axis labels the rolling period, while the
y-axis represents the out-of-sample SR of the portfolio returns every three years in the
future. The blue solid line, orange dash-dot line and green dash line correspond to the SR
with q = 0, q = minq∈Q q and q = maxq∈Q q respectively. The boxplot displays the Sharpe
ratio for all q ∈ Q, and the red triangle indicates the SR under our optimized q ∈ Q.
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Real Data: Global Minimum Variance Portfolio

Using future average returns as µ is not feasible in practical portfolio
construction. One remedy approach is:

Consider GMV portfolio, which does not require the knowledge of µ:

w∗ =
(Σ̂+ qI)−11

1⊤(Σ̂+ qI)−11
.

Then we check which GMV portfolio attains the minimum OOS
empirical variance.
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Real Data: Global Minimum Variance Portfolio
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Figure 8: Standard deviation (volatility) of global minimum variance
portfolios. The x-axis represents the rolling time, while the y-axis represents
the standard deviation of the portfolio returns every three years. The blue
solid line, orange dash-dot line and green dash line in the figure correspond to
the standard deviation with q = 0, q = minq∈Q q and q = maxq∈Q q
respectively. The boxplot displays the standard deviation for all q ∈ Q, and
the red triangle indicates the standard deviation under optimized q = q∗ ∈ Q.
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Real Data: Efficient Frontier

1 Set Q ∈ Q1 or Q ∈ Q2 as before. We vary µ0 from 0.4 to 6 with an
increment of 0.4. For each µ0, carry out 2 to 5 below.

2 We build portfolio assuming no risk-free asset.

3 Let r be the average return vector in the testing month. The optimal
portfolio is given by w∗ = g + µ0h. We run experiments for all q values
in the candidate sets, the case of q = 0 and the optimized q∗, which is
obtained by minimizing (g+µ0h)

⊤Σ̂(g+µ0h)

(1−c/p·trΣ̂(Σ̂+qI)−1)2
over all q’s.

4 We monthly roll the procedure from Jan 2013 to Jun 2023 and collect
daily portfolio returns for each q value.

5 We calculate the standard deviation of the daily returns for each q value,
including q = 0 and q = q∗, over the ten-year period.
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Real Data: Efficient Frontier
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Figure 9: The corrected efficient frontier. The x-axis represents the value of σ, while the
y-axis represents different values of µ0. The blue solid line, orange dash-dot line and green
dash line in the figure correspond to the different values of σ with q = 0, q = minq∈Q q and
q = maxq∈Q q respectively. The boxplot displays the values of σ for all q ∈ Q, and the red
triangle indicates the volatility of the portfolio returns under our optimized q ∈ Q.
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Conclusion
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Concluding Remarks

⋆ Introduced a novel in-sample approach to estimate the out-of-sample Sharpe
ratio in high-dimensional portfolio optimization.

⋆ Relaxed conditions allowing arbitrary diverging spikes when c < 1 and K
diverging spikes when c ≥ 1.

⋆ Extended to the estimation of efficient frontier when no risk-free asset.

⋆ Used the OOS Sharpe estimator as objective to optimize the Ridge tuning
parameter cycle by cycle.

⋆ Verified the performance of the estimator via extensive numerical experiments.
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Thank you!
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