Estimation of Out-of-Sample Sharpe Ratio for High Dimensional Portfolio Optimization

Xuran Meng

Joint work with Yuan Cao and Weichen Wang

University of Michigan

July 8, 2025

Introduction

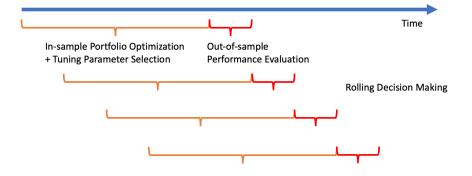
- Estimating OOS Sharpe
- Section 1: Estimating Efficient Frontier
- Stepsion 2: Optimization Over Regularization
- Extension 3: Estimating OOS Sharpe with Sample Mean
- Real Data Experiments
- Onclusion

Portfolio Management

Portfolio Management

[pórt-'fō-lē-,ō 'ma-nij-mənt]

The art and science of selecting and overseeing a group of investments that meet the long-term financial objectives and risk tolerance of a client, a company, or an institution.



Definition (Mean-variance portfolio)

Given p risky assets with mean $\mathbf{r} \in \mathbb{R}^p$ and covariance $\Sigma \in \mathbb{R}^{p \times p}$, the mean-variance portfolio optimizes the allocation vector \mathbf{w} :

$$\mathbf{w}^* = \operatorname{argmin}_{\mathbf{w} \in \mathbb{R}^p} \mathbf{w}^\top \Sigma \mathbf{w} \quad \text{s.t.} \quad \mathbf{w}^\top \boldsymbol{\mu} = \mu_0.$$

Here, we denote by $\boldsymbol{\mu} = \mathbf{r} - r_0 \mathbf{1}$ the excess return of the risky assets, and $\mu_0 > 0$ is the targeted excess return of the portfolio.

The solution is $\mathbf{w}^* \propto \Sigma^{-1} \boldsymbol{\mu}$. We assume $\boldsymbol{\mu}$ is known and $\boldsymbol{\Sigma}$ needs to be estimated.

Ridge Regularized Mean-Variance Portoflio

 ℓ_2 -Regularized-MV: Consider the optimization with regularization Q:

$$\mathbf{w}^* = \operatorname{argmin}_{\mathbf{w} \in \mathbb{R}^p} \mathbf{w}^\top (\widehat{\mathbf{\Sigma}} + \mathbf{Q}) \mathbf{w} \quad \text{s.t.} \quad \mathbf{w}^\top \boldsymbol{\mu} = \mu_0,$$

where \mathbf{Q} is positive definite. The optimal \mathbf{w}^* satisfies

$$\mathbf{w}^* \propto (\widehat{\mathbf{\Sigma}} + \mathbf{Q})^{-1} oldsymbol{\mu}.$$

Ridge Regularized Mean-Variance Portoflio

 ℓ_2 -Regularized-MV: Consider the optimization with regularization Q:

$$\mathbf{w}^* = \operatorname{argmin}_{\mathbf{w} \in \mathbb{R}^p} \mathbf{w}^\top (\widehat{\mathbf{\Sigma}} + \mathbf{Q}) \mathbf{w} \quad \text{s.t.} \quad \mathbf{w}^\top \boldsymbol{\mu} = \mu_0,$$

where \mathbf{Q} is positive definite. The optimal \mathbf{w}^* satisfies

$$\mathbf{w}^* \propto (\widehat{\mathbf{\Sigma}} + \mathbf{Q})^{-1} \boldsymbol{\mu}.$$

OOS Sharpe Ratio of w^{*}:

$$SR(\mathbf{Q}) = \frac{\mathbb{E}_{\widetilde{\mathbf{R}}}[\mathbf{w}^{*\top}(\widetilde{\mathbf{R}} - r_0 \mathbf{1})]}{\sqrt{\operatorname{Var}_{\widetilde{\mathbf{R}}}[\mathbf{w}^{*\top}(\widetilde{\mathbf{R}} - r_0 \mathbf{1})]}} = \frac{\boldsymbol{\mu}^{\top}(\widehat{\boldsymbol{\Sigma}} + \mathbf{Q})^{-1}\boldsymbol{\mu}}{\sqrt{\boldsymbol{\mu}^{\top}(\widehat{\boldsymbol{\Sigma}} + \mathbf{Q})^{-1}\boldsymbol{\Sigma}(\widehat{\boldsymbol{\Sigma}} + \mathbf{Q})^{-1}\boldsymbol{\mu}}},$$

where $\widetilde{\mathbf{R}}$ is an out-of-sample point with mean $\mathbf{r} = \boldsymbol{\mu} + r_0 \mathbf{1}$ and cov $\boldsymbol{\Sigma}$.

 \bigstar Is it possible to estimate the out-of-sample Sharpe ratio with some regularization using in-sample data?

 \bigstar Can we then optimize the estimator over the regularization parameter to enhance the out-of-sample Sharpe ratio?

In-sample Optimism

How about we just use $\widehat{\Sigma}$ to estimate Σ in $SR(\mathbf{Q})$?

- Assume *n* iid *p*-dim return vectors $\mathbf{R}_i \sim N(\boldsymbol{\mu}, \boldsymbol{\Sigma}), i = 1, ..., n, \boldsymbol{\mu}$ is known and $p/n \rightarrow c < 1$.
- The optimized MV portfolio with $\mathbf{Q} = \mathbf{0}$ is based on the sample covariance $\widehat{\mathbf{\Sigma}} = \frac{1}{n} \sum_{i=1}^{n} (\mathbf{R}_i \boldsymbol{\mu}) (\mathbf{R}_i \boldsymbol{\mu})^{\top}$, i.e. $\mathbf{w}^* \propto \widehat{\mathbf{\Sigma}}^{-1} \boldsymbol{\mu}$.
- Its in-sample SR is $\sqrt{\mu^{\top} \widehat{\Sigma}^{-1} \mu}$ while its out-of-sample SR is $\mu^{\top} \widehat{\Sigma}^{-1} \mu / \sqrt{\mu^{\top} \widehat{\Sigma}^{-1} \Sigma \widehat{\Sigma}^{-1} \mu}$.
- Our theorem will show the latter is approximately $(1-c)\sqrt{\mu^{\top}\widehat{\Sigma}^{-1}\mu}$, so the in-sample SR is 1/(1-c) times larger.
- When c is close to 1, the portfolio performance will be significantly exaggerated.

Estimating OOS Sharpe

0 Observed sample data $\mathbf{R} \in \mathbb{R}^{n \times p}$ satisfies

$$\mathbf{R} = \mathbf{1}_n \mathbf{r}^\top + \mathbf{X},$$

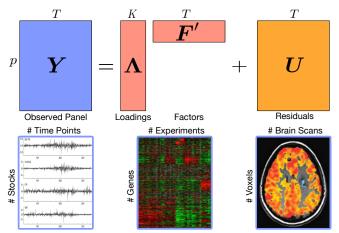
where $\mathbf{X} = \mathbf{Z} \mathbf{\Sigma}^{\frac{1}{2}} \in \mathbb{R}^{n \times p}$. The elements in $\mathbf{Z} \in \mathbb{R}^{n \times p}$ are i.i.d zero mean, variance 1 and finite $(8 + \varepsilon)$ -order moment for some $\varepsilon > 0$.

- ② The portfolio dimension p and the sample size n both tend to infinity, with p/n → c > 0.
- There exist constants $c_{\mathbf{Q}}, C_{\mathbf{Q}} > 0$ such that $c_{\mathbf{Q}} \leq \lambda_{\min}(\mathbf{Q})$ and $\|\mathbf{\Sigma}^{-\frac{1}{2}}\mathbf{Q}\mathbf{\Sigma}^{-\frac{1}{2}}\|_{\mathrm{op}} \leq C_{\mathbf{Q}}$ for any sequences (n, p). In addition, we allow $\mathbf{Q} = \mathbf{0}$ when c < 1.

- Σ is well scaled as $\|\Sigma/p\|_{tr} \leq C$ for some constant C > 0. Denote by $\lambda_1 \geq \cdots \geq \lambda_p$ the eigenvalues of Σ . $\lambda_p \geq c_1$ for some constant $c_1 > 0$. One of the following cases must hold:
 - (a) (Bounded spectrum) There exists $C_1 > 0$ such that $\lambda_1 \leq C_1$.
 - (b) (Arbitrary number of diverging spikes when c < 1) $p/n \rightarrow c < 1$ and we allow arbitrary number of top eigenvalues to go to infinity.
 - (c) (Fixed number of diverging spikes when $c \ge 1$) $p/n \to c \ge 1$ and we let the number of diverging spikes be K, K is fixed and $\lambda_1 \le C \lambda_K^2$ for some constant C > 0.

Factor models

$$y_{jt} = \boldsymbol{\lambda}'_{j} \mathbf{f}_{t} + u_{jt}, \quad j = 1, ..., p, \quad t = 1, ..., T \text{ or } n, \quad \mathbf{f}_{t} \in \mathbb{R}^{K}.$$
Matrix form: $\boldsymbol{Y} = \boldsymbol{\Lambda} \mathbf{F}' + \boldsymbol{U}.$ $\mathbb{E} \mathbf{f}_{t} = \mathbf{0}, \quad \mathbb{E} u_{jt} = 0.$



$$y_{jt} = \boldsymbol{\lambda}_j^{\top} \mathbf{f}_t + u_{jt}, \ j = 1, ..., p, \ t = 1, ..., T \text{ or } n, \ \mathbf{f}_t \in \mathbb{R}^K.$$

<u>Vector form</u>: $\boldsymbol{y}_t = \boldsymbol{\Lambda} \ \mathbf{f}_t + \boldsymbol{u}_t.$ <u>Covariance structure</u>: $\boldsymbol{\Sigma} = \operatorname{Cov}(\boldsymbol{y}_t) = \boldsymbol{\Lambda} \operatorname{Cov}(\mathbf{f}_t) \boldsymbol{\Lambda}^\top + \operatorname{Cov}(\boldsymbol{u}_t).$

- Typically, we assume $\text{Cov}(\boldsymbol{u}_t)$ is a diagonal matrix (strict factor model) and $\text{Cov}(\mathbf{f}_t), \text{Cov}(\boldsymbol{u}_t)$ are well-conditioned.
- For $j \leq K$, $\lambda_j(\mathbf{\Sigma}) \asymp \lambda_j(\mathbf{\Lambda} \operatorname{Cov}(\mathbf{f}_t)\mathbf{\Lambda}^\top) \asymp \lambda_j(\mathbf{\Lambda}\mathbf{\Lambda}^\top) \asymp \lambda_j(\mathbf{\Lambda}^\top\mathbf{\Lambda})$ $\asymp \lambda_j(\sum_{j=1}^p \mathbf{\lambda}_j\mathbf{\lambda}_j^\top) \asymp p$ by law of large numbers.
- For j > K, $\lambda_j(\boldsymbol{\Sigma}) \asymp \lambda_j(\operatorname{Cov}(\boldsymbol{u}_t)) \asymp 1$.
- Therefore, we have fixed number K of diverging spikes with $\lambda_j \simeq p$ as $p \to \infty$.

Define the following quantities:

$$T_{n,1}(\mathbf{Q}) = \operatorname{tr}\left[\left(\frac{\mathbf{X}^{\top}\mathbf{X}}{n} + \mathbf{Q}\right)^{-1}\mathbf{A}\right],$$

$$T_{n,2}(\mathbf{Q}) = \operatorname{tr}\left[\left(\frac{\mathbf{X}^{\top}\mathbf{X}}{n} + \mathbf{Q}\right)^{-1}\boldsymbol{\Sigma}\left(\frac{\mathbf{X}^{\top}\mathbf{X}}{n} + \mathbf{Q}\right)^{-1}\mathbf{A}\right],$$

for some deterministic matrix $\mathbf{A} \in \mathbb{R}^{p \times p}$.

By setting $\mathbf{A} = \boldsymbol{\mu} \boldsymbol{\mu}^{\top}$, Sharpe Ratio (SR) could be expressed as

$$SR(\mathbf{Q}) = \frac{T_{n,1}(\mathbf{Q})}{\sqrt{|T_{n,2}(\mathbf{Q})|}}.$$

Theorem

Suppose Assumptions 1-4 hold. For any given \mathbf{Q} , a good estimator $\widehat{SR}(\mathbf{Q})$ for $SR(\mathbf{Q})$ is as follows.

$$\widehat{SR}(\mathbf{Q}) = \frac{T_{n,1}(\mathbf{Q})}{\sqrt{\left|\widehat{T}_{n,2}(\mathbf{Q})\right|}}, \quad where \quad \widehat{T}_{n,2}(\mathbf{Q}) = \frac{\operatorname{tr}(\widehat{\mathbf{\Sigma}} + \mathbf{Q})^{-1}\widehat{\mathbf{\Sigma}}(\widehat{\mathbf{\Sigma}} + \mathbf{Q})^{-1}\mathbf{A}}{\left(1 - \frac{c}{p}\operatorname{tr}\widehat{\mathbf{\Sigma}}(\widehat{\mathbf{\Sigma}} + \mathbf{Q})^{-1}\right)^{2}}$$

If ${\bf A}$ is semi-positive definite, it holds that

$$\widehat{SR}(\mathbf{Q})/SR(\mathbf{Q}) \stackrel{a.s}{\rightarrow} 1.$$

If additionally $\|\mathbf{A}\|_{tr}$ is bounded, then $SR(\mathbf{Q})$ is almost surely bounded and

$$\widehat{SR}(\mathbf{Q}) - SR(\mathbf{Q}) \stackrel{a.s}{\to} 0.$$

- Fix n = 1500, consider p = 750 (ratio c = 1/2) and p = 2250 (ratio c = 3/2).
- **2** $\Sigma = \text{diag}(\lambda_1, \dots, \lambda_p) + 2 \cdot \mathbf{11}^{\top}$, where $\{\lambda_i\}_{i=1}^p$ are generated from a truncated $\Gamma^{-1}(1, 1)$ distribution, truncated with the interval [0.01, 9], and then ranked in decreasing order.
- 3 $r_0 = 0, \mu = \sqrt{5/p} \cdot (\mathbf{1}(S_+) \mathbf{1}(S_-)) \in \mathbb{R}^p$. S_+ and S_- are randomly selected subsets of [p] with $|S_+| = |S_-| = p/10$ and $S_+ \cup S_- = \emptyset$.
- **Q** $\mathbf{Q} = q \cdot \mathbf{Q}_0$ where $\mathbf{Q}_0 = \text{diag}(3, ..., 3, 1, ..., 1)$, where the numbers of 3 and 1 entries are both p/2. We will vary q.
- Seperat 1000 times.

Simulations: Sharpe Estimation

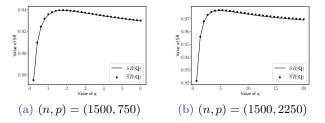


Figure 1: Simulation results in the basic settings. Figure 1a shows the case when c = 1/2 and Figure 1b depicts the case when c = 3/2. The x-axis corresponds to different q values, and the y-axis is the value of SR. The black solid line connects the values of $SR(q \cdot \mathbf{Q}_0)$, while the solid points represent the proposed statistics $\widehat{SR}(q \cdot \mathbf{Q}_0)$.

Simulations: Sharpe Estimation

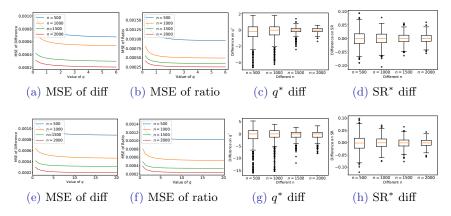


Figure 2: Simulation results with increasing *n*. Figures 2a-2d and Figures 2e-2h correspond to c = 1/2 and c = 3/2. Figures 2a, 2e show $\sum_{b=1}^{1000} (SR_b(q \cdot \mathbf{Q}_0) - \widehat{SR}_b(q \cdot \mathbf{Q}_0))^2/1000$ for different *q*'s. Figures 2b, 2f show $\sum_{b=1}^{1000} (SR_b(q \cdot \mathbf{Q}_0) - \widehat{SR}_b(q \cdot \mathbf{Q}_0) - 1)^2/1000$ for different *q*'s. Figures 2c, 2g give boxplot of $\operatorname{argmax}_q SR_b(q \cdot \mathbf{Q}_0) - \operatorname{argmax}_q \widehat{SR}_b(q \cdot \mathbf{Q}_0)$ for different *n*'s. Figures 2d, 2h give boxplot of $\max_q SR_b(q \cdot \mathbf{Q}_0) - \max_q \widehat{SR}_b(q \cdot \mathbf{Q}_0)$ for different *n*'s.

Estimating Efficient Frontier

<u>When No Risk-free Asset</u>: Given target return $\mu_0 > 0$, the regularized portfolio optimization is given by

$$\mathbf{w}^* = \arg\min_{\mathbf{w}} \mathbf{w}^{\top} (\widehat{\mathbf{\Sigma}} + \mathbf{Q}) \mathbf{w}, \quad \text{s.t. } \mathbf{w}^{\top} \mathbf{r} = \mu_0 \text{ and } \mathbf{w}^{\top} \mathbf{1} = 1.$$

The optimal \mathbf{w}^* is given by $\mathbf{w}^* = \mathbf{g} + \mu_0 \cdot \mathbf{h}$, where

$$\begin{split} \mathbf{g} &= D^{-1} \big[B(\widehat{\boldsymbol{\Sigma}} + \mathbf{Q})^{-1} \mathbf{1} - A(\widehat{\boldsymbol{\Sigma}} + \mathbf{Q})^{-1} \mathbf{r} \big], \\ \mathbf{h} &= D^{-1} \big[C(\widehat{\boldsymbol{\Sigma}} + \mathbf{Q})^{-1} \mathbf{r} - A(\widehat{\boldsymbol{\Sigma}} + \mathbf{Q})^{-1} \mathbf{1} \big], \\ A &= \mathbf{r}^{\top} (\widehat{\boldsymbol{\Sigma}} + \mathbf{Q})^{-1} \mathbf{1}, \ B &= \mathbf{r}^{\top} (\widehat{\boldsymbol{\Sigma}} + \mathbf{Q})^{-1} \mathbf{r}, \\ C &= \mathbf{1}^{\top} (\widehat{\boldsymbol{\Sigma}} + \mathbf{Q})^{-1} \mathbf{1}, \ D &= BC - A^2. \end{split}$$

<u>When No Risk-free Asset</u>: Given target return $\mu_0 > 0$, the regularized portfolio optimization is given by

$$\mathbf{w}^* = \arg\min_{\mathbf{w}} \mathbf{w}^{\top} (\widehat{\mathbf{\Sigma}} + \mathbf{Q}) \mathbf{w}, \quad \text{s.t. } \mathbf{w}^{\top} \mathbf{r} = \mu_0 \text{ and } \mathbf{w}^{\top} \mathbf{1} = 1.$$

The optimal \mathbf{w}^* is given by $\mathbf{w}^* = \mathbf{g} + \mu_0 \cdot \mathbf{h}$, where

$$\begin{split} \mathbf{g} &= D^{-1} \big[B(\widehat{\boldsymbol{\Sigma}} + \mathbf{Q})^{-1} \mathbf{1} - A(\widehat{\boldsymbol{\Sigma}} + \mathbf{Q})^{-1} \mathbf{r} \big], \\ \mathbf{h} &= D^{-1} \big[C(\widehat{\boldsymbol{\Sigma}} + \mathbf{Q})^{-1} \mathbf{r} - A(\widehat{\boldsymbol{\Sigma}} + \mathbf{Q})^{-1} \mathbf{1} \big], \\ A &= \mathbf{r}^{\top} (\widehat{\boldsymbol{\Sigma}} + \mathbf{Q})^{-1} \mathbf{1}, \ B &= \mathbf{r}^{\top} (\widehat{\boldsymbol{\Sigma}} + \mathbf{Q})^{-1} \mathbf{r}, \\ C &= \mathbf{1}^{\top} (\widehat{\boldsymbol{\Sigma}} + \mathbf{Q})^{-1} \mathbf{1}, \ D &= BC - A^2. \end{split}$$

Efficient Frontier: The curve (σ_0, μ_0) as we change target return μ_0 , where

$$\sigma_0^2 = \mathbf{w}^{*\top} \boldsymbol{\Sigma} \mathbf{w}^* = (\mathbf{g} + \mu_0 \cdot \mathbf{h})^\top \boldsymbol{\Sigma} (\mathbf{g} + \mu_0 \cdot \mathbf{h}),$$

is the variance. Our objective is to estimate σ_0 for any given **Q** and μ_0 .

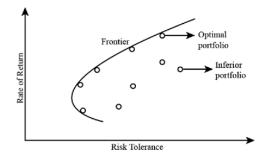
Efficient Frontier

Efficient Frontier with known Σ :

$$\sigma_0^2 = (\mathbf{g} + \mu_0 \cdot \mathbf{h})^\top \boldsymbol{\Sigma} (\mathbf{g} + \mu_0 \cdot \mathbf{h}) = \mathbf{g}^\top \boldsymbol{\Sigma} \mathbf{g} + 2\mu_0 \mathbf{g}^\top \boldsymbol{\Sigma} \mathbf{h} + \mu_0^2 \mathbf{h}^\top \boldsymbol{\Sigma} \mathbf{h}.$$

When we know true Σ , we use Σ instead of $\widehat{\Sigma} + \mathbf{Q}$ in $\mathbf{g}, \mathbf{h}, A, B, C, D$. Then the above is equivalent to

 $C\sigma_0^2 - C^2/D \cdot (\mu_0 - A/C)^2 = 1.$ (Hyperbola)



Assumptions

(a) Let $s_0 > 0$ to be the unique solution of the equation.

$$s_0 = \frac{c}{p} \operatorname{tr} \mathbf{\Sigma} \left(\frac{\mathbf{\Sigma}}{1+s_0} + \mathbf{Q} \right)^{-1}.$$

Define

$$\begin{split} \mathcal{A}_{rr} &= \mathbf{r}^{\top} \bigg(\frac{\mathbf{\Sigma}}{1+s_0} + \mathbf{Q} \bigg)^{-1} \mathbf{r}, \\ \mathcal{A}_{r1} &= \mathbf{r}^{\top} \bigg(\frac{\mathbf{\Sigma}}{1+s_0} + \mathbf{Q} \bigg)^{-1} \mathbf{1}, \\ \mathcal{A}_{11} &= \mathbf{1}^{\top} \bigg(\frac{\mathbf{\Sigma}}{1+s_0} + \mathbf{Q} \bigg)^{-1} \mathbf{1}. \end{split}$$

There exists a constant $\rho < 1$ such that $\mathcal{A}_{r1}^2/(\mathcal{A}_{11}\mathcal{A}_{rr}) \leq \rho < 1$.

Theorem

Suppose that Assumptions 1-5 hold. Define

$$\widehat{\sigma}^2 = \frac{(\mathbf{g} + \mu_0 \mathbf{h})^\top \widehat{\boldsymbol{\Sigma}} (\mathbf{g} + \mu_0 \mathbf{h})}{(1 - c/p \cdot \operatorname{tr} \widehat{\boldsymbol{\Sigma}} (\widehat{\boldsymbol{\Sigma}} + \mathbf{Q})^{-1})^2},$$

where ${\bf g}$ and ${\bf h}$ are defined as before, it holds that

$$\hat{\sigma}^2 / \sigma_0^2 \stackrel{a.s}{\to} 1.$$

Moreover, the following properties hold:

Simulations: Efficient Frontier Estimation

- Fix n = 1500, consider p = 750 (ratio c = 1/2) and p = 2250 (ratio c = 3/2).
- **2** Generate $\boldsymbol{\xi} \in \mathbb{R}^p$ i.i.d. $\Gamma(1,1)$. $\boldsymbol{\Sigma} = \text{diag}(\lambda_1, \dots, \lambda_p) + 2 \cdot \mathbf{1}\mathbf{1}^\top + \boldsymbol{\xi}\boldsymbol{\xi}^\top$. $\boldsymbol{\Sigma}$ respresents a covariance matrix with two factors.
- **3** $r_0 = 0$, the mean vector $\boldsymbol{\mu}$ here has two choices: $\boldsymbol{\mu} = \boldsymbol{\mu}_1 = p^{\frac{1}{4}} \boldsymbol{\mu}_0 + 2 \cdot \mathbf{1}$ and $\boldsymbol{\mu} = \boldsymbol{\mu}_2 = \boldsymbol{\mu}_0 + 2 \cdot \mathbf{1} + \boldsymbol{\xi}$. \mathcal{A}_{rr} becomes unbounded when $\boldsymbol{\mu} = \boldsymbol{\mu}_1$, while it remains bounded when $\boldsymbol{\mu} = \boldsymbol{\mu}_2$.
- **(a)** μ_0 ranges from 0.2 to 6 with the increment of 0.2.
- Repeat 1000 times.

Simulations: Efficient Frontier Estimation

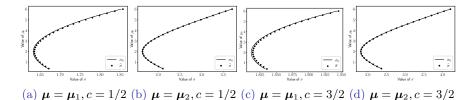
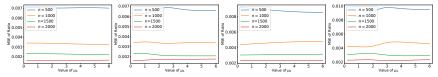


Figure 3: Efficient frontiers of \mathbf{w}^* . The x-axis is the volatility level, and the y-axis is the target return μ_0 . The solid line characterizes the curve of (μ_0, σ_0) , while the solid points represent the points in the curve of $(\mu_0, \hat{\sigma})$.

Simulations: Efficient Frontier Estimation



(a) $\boldsymbol{\mu} = \boldsymbol{\mu}_1, c = 1/2$ (b) $\boldsymbol{\mu} = \boldsymbol{\mu}_2, c = 1/2$ (c) $\boldsymbol{\mu} = \boldsymbol{\mu}_1, c = 3/2$ (d) $\boldsymbol{\mu} = \boldsymbol{\mu}_2, c = 3/2$

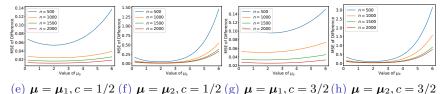


Figure 4: Simulation results with increasing *n*. *x*-axis in all figures shows different values of μ_0 . Figures 4a-4d show $\sum_{b=1}^{1000} (\hat{\sigma}_b^2 / \sigma_{0,b}^2 - 1)^2 / 1000$. Figures 4e-4h show $\sum_{b=1}^{1000} (\hat{\sigma}_b^2 - \sigma_{0,b}^2)^2 / 1000$.

Optimization Over ${\bf Q}$

★ Q1: Given the maximum OOS Sharpe $SR_{\text{max}} = \sqrt{\mu^{\top} \Sigma^{-1} \mu}$, can $SR(\mathbf{Q})$ approach SR_{max} ? How to predetermine the structure of \mathbf{Q} ?

★ Q2: Can we optimize **Q** from $\widehat{SR}(\mathbf{Q})$? Define $\widehat{\mathbf{Q}} = \operatorname{argmax}_{\mathbf{Q}} \widehat{SR}(\mathbf{Q})$, will the performance of $SR(\widehat{\mathbf{Q}})$ be good?

Theorem

Suppose that Assumptions 1-4 hold. Then for any given $\varepsilon > 0$, there exists deterministic sequences of matrices $\widetilde{\mathbf{Q}} \in \mathbb{R}^{p \times p}$ such that with probability 1,

$$1 - \varepsilon \le \lim_{n \to +\infty} SR(\widetilde{\mathbf{Q}}) / SR_{\max} \le 1.$$

Theorem

Suppose that Assumptions 1-4 hold. Then for any given $\varepsilon > 0$, there exists deterministic sequences of matrices $\widetilde{\mathbf{Q}} \in \mathbb{R}^{p \times p}$ such that with probability 1,

$$1 - \varepsilon \le \lim_{n \to +\infty} SR(\widetilde{\mathbf{Q}}) / SR_{\max} \le 1.$$

Key of Proof: The existence of $\widetilde{\mathbf{Q}}$ is proved by letting $\widetilde{\mathbf{Q}} = C\Sigma$ for some constant C large enough.

Simulations: Different Structure of Q

- Fix n = 1500, consider p = 750 (ratio c = 1/2) and p = 2250 (ratio c = 3/2).
- Σ = diag(λ₁,...,λ_p) + 2 · 11^T, where {λ_i}^p_{i=1} are generated from a truncated Γ⁻¹(1,1) distribution, truncated with the interval [0.01,9], and then ranked in decreasing order.
- $r_0 = 0, \ \mu = \sqrt{5/p} \cdot (\mathbf{1}(S_+) \mathbf{1}(S_-)) \in \mathbb{R}^p. \ S_+ \text{ and } S_- \text{ are randomly selected subsets of } [p] \text{ with } |S_+| = |S_-| = p/10 \text{ and } S_+ \cup S_- = \emptyset.$
- Let $\mathbf{Q}_0 = \operatorname{diag}(3, ..., 3, 1, ..., 1)$, where the numbers of 3 and 1 entries are both p/2. Define $\mathbf{Q}_1 = 0.1\mathbf{Q}_0 + q \cdot \operatorname{diag}(\lambda_1, ..., \lambda_p)$; $\mathbf{Q}_2 = 0.5\mathbf{I}_p + q\mathbf{Q}_0$ and $\mathbf{Q}_3 = q\mathbf{\Sigma}$. We will vary q.

Seperat 1000 times.

Simulations: Different Structure of Q

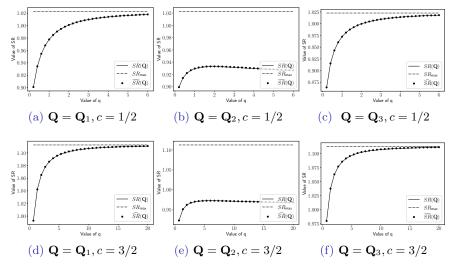


Figure 5: Simulation results with different **Q**'s.

Xuran Meng

Estimation of OOS Sharpe

Table 1: Comparison for $SR(\widehat{\mathbf{Q}})$ and $\widehat{SR}(\widehat{\mathbf{Q}})$. The mean gives the average value and the range gives the minimum and maximum values over the 20 independent trials.

(n,p)	$SR_{\rm max}$	Optimization over full \mathbf{Q}				
(n,p)		mean of $SR(\widehat{\mathbf{Q}})$	Range of $SR(\widehat{\mathbf{Q}})$	mean of $\widehat{SR}(\widehat{\mathbf{Q}})$	Range of $\widehat{SR}(\widehat{\mathbf{Q}})$	
(500, 250)	0.923	0.643	[0.604, 0.694]	1.299	[1.178, 1.454]	
(1000, 500)	1.123	0.791	[0.738, 0.824]	1.513	[1.406, 1.578]	
(n,p)	$SR_{\rm max}$	Optimization over diagonal \mathbf{Q}				
		mean of $SR(\widehat{\mathbf{Q}})$	Range of $SR(\widehat{\mathbf{Q}})$	mean of $\widehat{SR}(\widehat{\mathbf{Q}})$	Range of $\widehat{SR}(\widehat{\mathbf{Q}})$	
(500, 250)	0.923	0.770	[0.715, 0.818]	0.967	[0.909, 1.056]	
(1000, 500)	1.123	0.944	[0.912, 0.979]	1.146	[1.081, 1.224]	

Table 1: Comparison for $SR(\widehat{\mathbf{Q}})$ and $\widehat{SR}(\widehat{\mathbf{Q}})$. The mean gives the average value and the range gives the minimum and maximum values over the 20 independent trials.

(n,p)	$SR_{\rm max}$	Optimization over full \mathbf{Q}				
(n,p)		mean of $SR(\widehat{\mathbf{Q}})$	Range of $SR(\widehat{\mathbf{Q}})$	mean of $\widehat{SR}(\widehat{\mathbf{Q}})$	Range of $\widehat{SR}(\widehat{\mathbf{Q}})$	
(500, 250)	0.923	0.643	[0.604, 0.694]	1.299	[1.178, 1.454]	
(1000, 500)	1.123	0.791	[0.738, 0.824]	1.513	[1.406, 1.578]	
(n,p)	$SR_{\rm max}$	Optimization over diagonal \mathbf{Q}				
		mean of $SR(\widehat{\mathbf{Q}})$	Range of $SR(\widehat{\mathbf{Q}})$	mean of $\widehat{SR}(\widehat{\mathbf{Q}})$	Range of $\widehat{SR}(\widehat{\mathbf{Q}})$	
(500, 250)	0.923	0.770	[0.715, 0.818]	0.967	[0.909, 1.056]	
(1000, 500)	1.123	0.944	[0.912, 0.979]	1.146	[1.081, 1.224]	

Primary Reason: $\widehat{\mathbf{Q}}$ is overfitted to in-sample data, breaking down the independence between $\widehat{\boldsymbol{\Sigma}}$ and \mathbf{Q} .

Assumptions

- There exists universal constants l, L > 0 such that for all $\mathbf{Q} \in \mathcal{Q}$, both $SR(\mathbf{Q})$ and $\widehat{SR}(\mathbf{Q})$ satisfy $l \leq SR(\mathbf{Q})$, $\widehat{SR}(\mathbf{Q}) \leq L$ almost surely for all *n* large enough.
- There exists a sequence of bijections $\phi_n : \mathcal{B} \to \mathcal{Q}$, where $\mathcal{B} \subset \mathbb{R}^k$ is a fixed compact set (independent of *n*) for some constant k > 0. Furthermore, the sequence $\{\phi_n\}$ is equicontinuous with respect to the operator norm: for any $\varepsilon > 0$, there exists $\delta > 0$ (independent of *n*) such that for all *n* and all $\alpha, \alpha' \in \mathcal{B}$,

$$\|\boldsymbol{\alpha} - \boldsymbol{\alpha}'\|_2 \leq \delta \implies \|\phi_n(\boldsymbol{\alpha}) - \phi_n(\boldsymbol{\alpha}')\|_{\mathrm{op}} \leq \varepsilon.$$

Assumptions

- There exists universal constants l, L > 0 such that for all $\mathbf{Q} \in \mathcal{Q}$, both $SR(\mathbf{Q})$ and $\widehat{SR}(\mathbf{Q})$ satisfy $l \leq SR(\mathbf{Q})$, $\widehat{SR}(\mathbf{Q}) \leq L$ almost surely for all *n* large enough.
- There exists a sequence of bijections $\phi_n : \mathcal{B} \to \mathcal{Q}$, where $\mathcal{B} \subset \mathbb{R}^k$ is a fixed compact set (independent of *n*) for some constant k > 0. Furthermore, the sequence $\{\phi_n\}$ is equicontinuous with respect to the operator norm: for any $\varepsilon > 0$, there exists $\delta > 0$ (independent of *n*) such that for all *n* and all $\boldsymbol{\alpha}, \boldsymbol{\alpha}' \in \mathcal{B}$,

$$\|oldsymbol{lpha}-oldsymbol{lpha}'\|_2\leq\delta \quad\Longrightarrow\quad \|\phi_n(oldsymbol{lpha})-\phi_n(oldsymbol{lpha}')\|_{
m op}\leqarepsilon.$$

Remark: Q is the candidate set for \mathbf{Q} . A specific example for Q is $\phi_n(\boldsymbol{\alpha}) = \alpha_1 \mathbf{Q}_1 + \alpha_2 \mathbf{Q}_2 + \cdots + \alpha_k \mathbf{Q}_k$ where $\mathbf{Q}_1, \ldots, \mathbf{Q}_k$ are predetermined matrices with $\|\mathbf{Q}_j\|_{\text{op}}$ bounded for all j, \mathbf{Q}_j are linearly independent, and the coefficients $\boldsymbol{\alpha}$ vary over a compact set in \mathbb{R}^k .

Theorem

Suppose that Assumptions 1-4 and 6-7 hold. Define

$$\widehat{\mathbf{Q}} = \operatorname{argmax}_{\mathbf{Q} \in \mathcal{Q}} \widehat{SR}(\mathbf{Q}).$$

 $It \ holds \ that$

$$\widehat{SR}(\widehat{\mathbf{Q}})/SR(\widehat{\mathbf{Q}}) \stackrel{a.s}{\to} 1, \quad \widehat{SR}(\widehat{\mathbf{Q}}) - SR(\widehat{\mathbf{Q}}) \stackrel{a.s}{\to} 0.$$

Theorem

Suppose that Assumptions 1-4 and 6-7 hold. Define

$$\widehat{\mathbf{Q}} = \operatorname{argmax}_{\mathbf{Q} \in \mathcal{Q}} \widehat{SR}(\mathbf{Q}).$$

 $It \ holds \ that$

$$\widehat{SR}(\widehat{\mathbf{Q}})/SR(\widehat{\mathbf{Q}}) \stackrel{a.s}{\to} 1, \quad \widehat{SR}(\widehat{\mathbf{Q}}) - SR(\widehat{\mathbf{Q}}) \stackrel{a.s}{\to} 0.$$

Control of Overfitting Issues: When the search space for $\mathbf{Q}(\mathcal{Q})$ is well behaved and restricted to a finite dimensional family, the overfitting issue can be controlled, and the optimized candidate achieves consistent performance in the large-sample limit.

Estimating with Sample Mean $\widehat{\mu}$

 ℓ_2 -Regularized-MV: Consider the optimization with regularization Q:

$$\mathbf{w}^* = \operatorname{argmin}_{\mathbf{w} \in \mathbb{R}^p} \mathbf{w}^\top (\widehat{\mathbf{\Sigma}} + \mathbf{Q}) \mathbf{w} \quad \text{s.t.} \quad \mathbf{w}^\top \widehat{\boldsymbol{\mu}} = \mu_0,$$

where \mathbf{Q} is positive definite. The optimal \mathbf{w}^* satisfies

$$\mathbf{w}^* \propto (\widehat{\mathbf{\Sigma}} + \mathbf{Q})^{-1} \widehat{oldsymbol{\mu}}$$

 ℓ_2 -Regularized-MV: Consider the optimization with regularization Q:

$$\mathbf{w}^* = \operatorname{argmin}_{\mathbf{w} \in \mathbb{R}^p} \mathbf{w}^\top (\widehat{\mathbf{\Sigma}} + \mathbf{Q}) \mathbf{w} \quad \text{s.t.} \quad \mathbf{w}^\top \widehat{\boldsymbol{\mu}} = \mu_0,$$

where ${\bf Q}$ is positive definite. The optimal ${\bf w}^*$ satisfies

$$\mathbf{w}^* \propto (\widehat{\mathbf{\Sigma}} + \mathbf{Q})^{-1} \widehat{\boldsymbol{\mu}}.$$

OOS Sharpe Ratio of w^{*}:

$$SR(\mathbf{Q}) = \frac{\mathbb{E}_{\widetilde{\mathbf{R}}}[\mathbf{w}^{*\top}(\widetilde{\mathbf{R}} - r_0 \mathbf{1})]}{\sqrt{\operatorname{Var}_{\widetilde{\mathbf{R}}}[\mathbf{w}^{*\top}(\widetilde{\mathbf{R}} - r_0 \mathbf{1})]}} = \frac{\widehat{\boldsymbol{\mu}}^{\top}(\widehat{\boldsymbol{\Sigma}} + \mathbf{Q})^{-1}\boldsymbol{\mu}}{\sqrt{\widehat{\boldsymbol{\mu}}^{\top}(\widehat{\boldsymbol{\Sigma}} + \mathbf{Q})^{-1}\boldsymbol{\Sigma}(\widehat{\boldsymbol{\Sigma}} + \mathbf{Q})^{-1}\widehat{\boldsymbol{\mu}}}},$$

where $\widetilde{\mathbf{R}}$ is an out-of-sample point with mean $\mathbf{r} = \boldsymbol{\mu} + r_0 \mathbf{1}$ and cov $\boldsymbol{\Sigma}$.

③ Observed sample data $\mathbf{R} \in \mathbb{R}^{n \times p}$ satisfies

$$\mathbf{R} = \mathbf{1}_n \mathbf{r}^\top + \mathbf{X},$$

where $\mathbf{X} = \mathbf{Z} \mathbf{\Sigma}^{\frac{1}{2}} \in \mathbb{R}^{n \times p}$. The elements in $\mathbf{Z} \in \mathbb{R}^{n \times p}$ are i.i.d zero mean, variance 1 Gaussian random variables.

Theorem

Suppose Assumptions 2-4 and 8 hold. For any given \mathbf{Q} , a good estimator $\widehat{SR}(\mathbf{Q})$ for $SR(\mathbf{Q})$ is as follows.

$$\widehat{SR}(\mathbf{Q}) = \frac{\widehat{\boldsymbol{\mu}}^{\top}(\widehat{\boldsymbol{\Sigma}} + \mathbf{Q})^{-1}\widehat{\boldsymbol{\mu}} - \frac{\operatorname{tr}(\widehat{\boldsymbol{\Sigma}} + \mathbf{Q})^{-1}\widehat{\boldsymbol{\Sigma}}}{n - \operatorname{tr}(\widehat{\boldsymbol{\Sigma}} + \mathbf{Q})^{-1}\widehat{\boldsymbol{\Sigma}}}}{\sqrt{\widehat{\boldsymbol{\mu}}^{\top}(\widehat{\boldsymbol{\Sigma}} + \mathbf{Q})^{-1}\widehat{\boldsymbol{\Sigma}}(\widehat{\boldsymbol{\Sigma}} + \mathbf{Q})^{-1}\widehat{\boldsymbol{\mu}}}} \cdot \left(1 - \frac{c}{p}\operatorname{tr}\widehat{\boldsymbol{\Sigma}}(\widehat{\boldsymbol{\Sigma}} + \mathbf{Q})^{-1}\right).$$

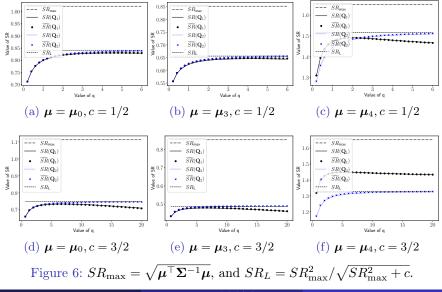
If $\|\mathbf{\Sigma}^{-\frac{1}{2}}\boldsymbol{\mu}\|_2$ is bounded and $\boldsymbol{\mu}^{\top}(\frac{\mathbf{\Sigma}}{1+s_0}+\mathbf{Q})^{-1}\boldsymbol{\mu}$ is lower bounded by some constant, it holds that

 $\widehat{SR}(\mathbf{Q})/SR(\mathbf{Q}) \stackrel{a.s}{\rightarrow} 1.$

Simulations: Sharpe Estimation with $\widehat{\mu}$

- Fix n = 1500, consider p = 750 (ratio c = 1/2) and p = 2250 (ratio c = 3/2).
- **2** $\Sigma = \text{diag}(\lambda_1, \dots, \lambda_p) + 2 \cdot \mathbf{11}^\top$, where $\{\lambda_i\}_{i=1}^p$ are generated from a truncated $\Gamma^{-1}(1, 1)$ distribution, truncated with the interval [0.01, 9], and then ranked in decreasing order.
- ◎ $r_0 = 0$, $\mu_0 = \sqrt{5/p} \cdot (\mathbf{1}(S_+) \mathbf{1}(S_-)) \in \mathbb{R}^p$. S_+ and S_- are randomly selected subsets of [p] with $|S_+| = |S_-| = p/10$ and $S_+ \cup S_- = \emptyset$. For μ_3 , we assume that each element follows an independent uniform distribution, $\operatorname{Unif}(-\sqrt{2/p}, \sqrt{2/p})$, $\mu_4 = \mu_3 + 2 \cdot \mathbf{1}_p$.
- **3** $\mathbf{Q}_1 = q \cdot \operatorname{diag}(\lambda_1, \dots, \lambda_p), \, \mathbf{Q}_2 = q \boldsymbol{\Sigma}.$ We will vary q.
- Seperat 1000 times.

Simulations: Sharpe Estimation with $\widehat{\mu}$



Xuran Meng

Estimation of OOS Sharpe

July 8, 2025

40/51

Real Data Experiments

- After deleting stocks with missing values, we have p = 365 stocks.
- Portfolios are built using historical data spanning 1, 2, 4 years, and rebalanced monthly.
- Each allocation vector \mathbf{w}^* is held for the entire future testing month. We then have returns of the portfolio \mathbf{w}^* in each trading day of the month.
- For now, we use OOS average return as μ in each testing month for portfolio construction (known μ).
- Repeat the procedure in a rolling fashion for all testing months from Jan 2013 to Jun 2023 and record daily returns for each trading day.

Real Data: Mean-Variance Portfolio

- Consider two candidate sets. $Q_1 = \{q \cdot \widehat{\Sigma}_{pre}, q \in [1:30]/10\}$, where $\widehat{\Sigma}_{pre}$ represents the sample covariance pre-trained from 2004 to 2008, not overlapping with data for portfolio construction and evaluation. $Q_2 = \{q \cdot \mathbf{I}_p, q \in [1:30]/10\}$, where \mathbf{I}_p is the identity matrix.
- ⁽²⁾ Calculate sample cov $\hat{\Sigma}$ with 1,2,4-year historical data and construct the regularized MV portfolio.
- **③** For each testing month, we run experiments for all candidate q values and also consider no regularization, i.e. q = 0, where we have $\mathbf{w} \propto \hat{\mathbf{\Sigma}}^+ \boldsymbol{\mu}$ and $\hat{\mathbf{\Sigma}}^+$ is the pseudo inverse, and the optimized $q^* \in \mathcal{Q}$ using our estimator. Note that q^* changes from month to month.
- We report the average Sharpe ratio of daily portfolio returns over the future three years.

Real Data: Mean-Variance Portfolio



(a) 1 year, $Q = Q_1, c > 1$ (b) 2 years, $Q = Q_1, c < 1$ (c) 4 years, $Q = Q_1, c < 1$

(d) 1 year, $Q = Q_2, c > 1$ (e) 2 years, $Q = Q_2, c < 1$ (f) 4 years, $Q = Q_2, c < 1$

Figure 7: SR of mean-variance portfolios. The x-axis labels the rolling period, while the Xuran Meng Estimation of OOS Sharpe July 8, 2025 44/51

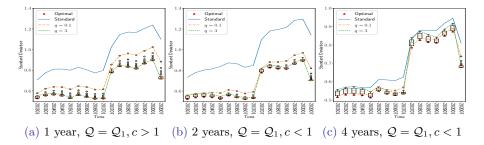
Using future average returns as μ is not feasible in practical portfolio construction. One remedy approach is:

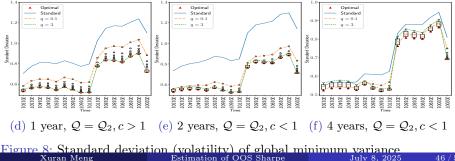
• Consider GMV portfolio, which does not require the knowledge of μ :

$$\mathbf{w}^* = \frac{(\widehat{\boldsymbol{\Sigma}} + q\mathbf{I})^{-1}\mathbf{1}}{\mathbf{1}^\top (\widehat{\boldsymbol{\Sigma}} + q\mathbf{I})^{-1}\mathbf{1}}$$

Then we check which GMV portfolio attains the minimum OOS empirical variance.

Real Data: Global Minimum Variance Portfolio





46 / 51

- Set $\mathbf{Q} \in \mathcal{Q}_1$ or $\mathbf{Q} \in \mathcal{Q}_2$ as before. We vary μ_0 from 0.4 to 6 with an increment of 0.4. For each μ_0 , carry out 2 to 5 below.
- 2 We build portfolio assuming no risk-free asset.
- ② Let **r** be the average return vector in the testing month. The optimal portfolio is given by $\mathbf{w}^* = \mathbf{g} + \mu_0 \mathbf{h}$. We run experiments for all q values in the candidate sets, the case of q = 0 and the optimized q^* , which is obtained by minimizing $\frac{(\mathbf{g}+\mu_0\mathbf{h})^\top \widehat{\boldsymbol{\Sigma}}(\mathbf{g}+\mu_0\mathbf{h})}{(1-c/p\cdot \mathrm{tr}\widehat{\boldsymbol{\Sigma}}(\widehat{\boldsymbol{\Sigma}}+q\mathbf{I})^{-1})^2}$ over all q's.
- We monthly roll the procedure from Jan 2013 to Jun 2023 and collect daily portfolio returns for each q value.
- We calculate the standard deviation of the daily returns for each q value, including q = 0 and $q = q^*$, over the ten-year period.

Real Data: Efficient Frontier

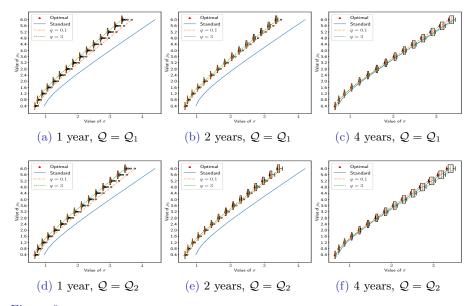


Figure 9. The corrected efficient frontier. The x-axis represents the value of σ while the Xuran Meng Estimation of OOS Sharpe July 8, 2025 48/51

Conclusion

- ★ Introduced a novel in-sample approach to estimate the out-of-sample Sharpe ratio in high-dimensional portfolio optimization.
- ★ Relaxed conditions allowing arbitrary diverging spikes when c < 1 and K diverging spikes when $c \ge 1$.
- \star Extended to the estimation of efficient frontier when no risk-free asset.
- ★ Used the OOS Sharpe estimator as objective to optimize the Ridge tuning parameter cycle by cycle.
- \star Verified the performance of the estimator via extensive numerical experiments.

Thank you!