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Portfolio Management

Portfolio
Management

[port-"fo-1&-,6 ‘'ma-nij-mant ]

The art and science of
selecting and overseeing

a group of investments

that meet the long-term
financial objectives and

risk tolerance of a client,

a company, or an institution.
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Mean-Variance Portfolio

Definition (Mean-variance portfolio)

Given p risky assets with mean r € RP and covariance ¥ € RP*P the
mean-variance portfolio optimizes the allocation vector w:

W = argmingcp, W' Ew  s.t. W' p = ppo.

Here, we denote by g = r — o1 the excess return of the risky assets,
and pg > 0 is the targeted excess return of the portfolio.

The solution is w* oc X!y,
We assume p is known and X needs to be estimated.
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egularized Mean-Variance Portoflio

l5-Regularized-MV: Consider the optimization with regularization Q:

w"* = argming cpp w (E+Qw st W p=pu,
where Q is positive definite. The optimal w* satisfies

w o (Z4 Q) .
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Ridge Regularized Mean-Variance Portoflio

l5-Regularized-MV: Consider the optimization with regularization Q:

w"* = argming cpp w (E+Qw st W p=pu,
where Q is positive definite. The optimal w* satisfies
w o (Z4 Q) .

OOS Sharpe Ratio of w*:

SR(Q) = Eﬁ[W*T(ﬁ: rol)] A;ﬁ(f: + Q):lu
YVarglw TR - D] i€+ Q=S+ Q)

Y

where R is an out-of-sample point with mean r = g + 791 and cov X.
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Open Problems

* Is it possible to estimate the out-of-sample Sharpe ratio with some
reqularization using in-sample data?

* Can we then optimize the estimator over the regularization parameter
to enhance the out-of-sample Sharpe ratio?
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In-sample Optimism

How about we just use 3 to estimate 3 in SR(Q)?

e Assume n iid p-dim return vectors R; ~ N(p,X),i =1,...,n, p is
known and p/n — ¢ < 1.

o The optimized MV portfolio with Q = 0 is based on the sample
covariance ¥ = 137 (R, — p)(R; —p) T, ie. w* ox T 71 p.

o Its in-sample SR is 4/ uTi_l p while its out-of-sample SR is
uTE_lu/\/MTE‘IEE‘lu-

o Our theorem will show the latter is approximately

(1—c)y/ pTS-1p, so the in-sample SR is 1/(1 — ¢) times larger.
@ When c is close to 1, the portfolio performance will be significantly
exaggerated.

Xuran Meng Estimation of OOS Sharpe July 8, 2025



Estimating OOS Sharpe
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Assumptions

@ Observed sample data R € R™*P gsatisfies
R=1,r' +X,

where X = ZX3 € R™P. The elements in Z € R™*? are i.i.d zero
mean, variance 1 and finite (8 + ¢)-order moment for some ¢ > 0.

@ The portfolio dimension p and the sample size n both tend to
infinity, with p/n — ¢ > 0.

@ There exist constants cq, Cq > 0 such that cq < Amin(Q) and
HE_%QE_%HOP < Cq for any sequences (n,p). In addition, we
allow Q = 0 when ¢ < 1.
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Assumptions

Q X is well scaled as || %/p||tr < C for some constant C' > 0. Denote
by A1 > --- > A, the eigenvalues of 3. A, > ¢; for some constant
c1 > 0. One of the following cases must hold:

(a) (Bounded spectrum) There exists C; > 0 such that Ay < C;.

(b) (Arbitrary number of diverging spikes when ¢ < 1) p/n — ¢ < 1 and
we allow arbitrary number of top eigenvalues to go to infinity.

(¢) (Fixed number of diverging spikes when ¢ > 1) p/n — ¢ > 1 and we
let the number of diverging spikes be K, K is fixed and A\; < C\%
for some constant C' > 0.

Xuran Meng Estimation of OOS Sharpe July 8, 2025



Factor models

yir =N f+uy, j=1,...,p, t=1,....,Torn, f e RE,
J 7 J

Matrix form: Y = AF +U. Ef, =0, Euj =0.
T K T T

F/
Y = A +| U

Observed Panel Loadings Factors Residuals

# Time Points # Experiments

N NTFINFR—

# Brain Scans

;-«v«-w-wmmw

# Stocks
# Genes
# Voxels
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Factor models

yjt:)\;—ft—l—ujt, j=1,...p, t=1,...,Torn, f cRX.

Vector form: y; = A f; + uy.
Covariance structure: 3 = Cov(y;) = A Cov(f;)AT + Cov(uy).

e Typically, we assume Cov(u;) is a diagonal matrix (strict factor
model) and Cov(f;), Cov(u;) are well-conditioned.

o For j < K, N;(E) < Nj(ACov(f)AT) < X (AAT) < \;(ATA)
= A( 1;:1 )\J)\;»r) = p by law of large numbers.

e For j > K, X\;j(X) < \;j(Cov(uy)) < 1.

e Therefore, we have fixed number K of diverging spikes with A\; < p
as p — oo.
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Sharpe Estimation

Define the following quantities:

T,1(Q) = tr[(XTX " Q) IA} ,

n

=] (521) (1) )

n

for some deterministic matrix A € RP*P,

By setting A = pu', Sharpe Ratio (SR) could be expressed as

Tn,l(Q)

Q=L
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Sharpe Estimation

Suppose Assumptions 1-4 hold. For any given Q, a good estimator S/’Y%(Q) for
SR(Q) is as follows.

gj%(Q) = ——————, where fn Q) = =
Toa(@)] 2 (-2 +Q) >2

T,1(Q) r(E+Q)'EE+Q)!
+

If A is semi-positive definite, it holds that

SR(Q)/SR(Q) *# 1.
If additionally | Ay is bounded, then SR(Q) is almost surely bounded and

SR(Q) - SR(Q) *$ 0.
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Simulations: Sharpe Estimation

@ Fix n = 1500, consider p = 750 (ratio ¢ = 1/2) and p = 2250 (ratio
c=3/2).

Q X =diag(A1,...,\p) +2-117, where {\;}}_, are generated from a
truncated I'~1(1, 1) distribution, truncated with the interval [0.01, 9],
and then ranked in decreasing order.

Q ro=0,p=+/5/p-(1(S4)—1(S-)) e RP. S, and S_ are randomly
selected subsets of [p] with |S4| = |S_| = p/10 and S, U S_ = 0.

Q@ Q=g Qp where Qg = diag(3,...,3,1,...,1), where the numbers of 3 and
1 entries are both p/2. We will vary q.

@ Repeat 1000 times.
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Simulations: Sharpe Estimation
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Figure 1: Simulation results in the basic settings. Figure la shows the case when ¢ = 1/2
and Figure 1b depicts the case when ¢ = 3/2. The x-axis corresponds to different g values,
and the y-axis is the value of SR. The black solid line connects the values of SR(q - Qo),
while the solid points represent the proposed statistics §I\%(q - Qo).
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Simulations: Sharpe Estimation
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Figure 2: Simulation results with increasing n. Figures 2a-2d and Figures 2e-2h correspond
to ¢ =1/2 and ¢ = 3/2. Figures 2a, 2e show ;20 (SRy(q - Qo) — SRy(q- Qo))2/1000 for
different ¢’s. Figures 2b, 2f show Z;iolo(SRb(q . Qo)/gl\%b(q - Qo) — 1)2/1000 for different
¢’s. Figures 2c, 2g give boxplot of argmax, SR,(q - Qo) — argmax, §}\%b(q - Qo) for different
n’s. Figures 2d, 2h give boxplot of maxq SRp(q - Qo) — maxq S/}\2b(q - Qo) for different n’s.
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Extension 1:

Estimating Efficient Frontier
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Efficient Frontier

When No Risk-free Asset: Given target return pg > 0, the regularized
portfolio optimization is given by

w* = argminw—r(i +Qw, st.wr=pandw'l=1.
w

The optimal w* is given by w* = g + pg - h, where

g=D1[(2+Q)11 A +Q) '],
h = D*lA[C’(E +Q)7'r (2 +Q)! }
A=F(+QVWJ%W(E+®
C=17(£+Q)"'1, D=BC - A2,
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Efficient Frontier

When No Risk-free Asset: Given target return pg > 0, the regularized
portfolio optimization is given by

w* = argminw—r(i +Qw, st.wr=pandw'l=1.
w

The optimal w* is given by w* = g + pg - h, where

g=D" [(2+Q)11 A +Q) '],
h=D"'[C(E+Q) 'r- AT+ Q1]
A=r"(Z+Q) 1, B:I'T(E—I—Q)_1
C=17(£+Q)"'1, D=BC - A2,

Efficient Frontier: The curve (oy, t10) as we change target return p, where
ok = wTEW = (g -+ po- ) S(g + o - h),

is the variance. Our objective is to estimate oy for any given Q and py.
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Efficient Frontier

Efficient Frontier with known X :

02 = (g + o -h) " B(g + po - h) = g Bg + 2uog ' Th + pZh Sh.

When we know true 3, we use X instead of S+ Qing h A B,C,D. Then
the above is equivalent to

Co? —C?/D - (o — A/C)? = 1. (Hyperbola)

A
. Optimal
Frontier portfolio
£
5 o Inferior
2 portfolio
2
o
o
Risk Tolerance g
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Assumptions

@ Let sg > 0 to be the unique solution of the equation.

-1
c by

Sp = —tr X + .

0 p <1+50 Q)

Define
szrT(lf%w)
Ay —rT< f +Q>
All:lT(lfso )

There exists a constant p < 1 such that A2, /(A1 A,.) < p < 1.
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Efficient Frontier Estimation

Suppose that Assumptions 1-5 hold. Define

52 — (g + oh) TE(g + poh)
1 -c/p-uE(E+Q)~1)2’

where g and h are defined as before, it holds that

52/02 %5 1.
Moreover, the following properties hold:

Q If A, is bounded, for any ro = O(uo) it holds that B =20 — Be==e £ 0.

w

Q If uo < CVA,, for some C >0, then 5% — o} 3 0.
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Simulations: Efficient Frontier Estimation

@ Fix n = 1500, consider p = 750 (ratio ¢ = 1/2) and p = 2250 (ratio
c=3/2).

© Generate £ € R? ii.d. I'(1,1). & =diag(Ay,...,\p) +2-117 +££7. =
respresents a covariance matrix with two factors.

© 1o =0, the mean vector p here has two choices: u = pu; = p%uo +2-1
and p = po = po+2-1+&. A, becomes unbounded when p = pq,
while it remains bounded when p = po.

Q Q=02-Qq.
@ o ranges from 0.2 to 6 with the increment of 0.2.
@ Repeat 1000 times.
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Efficient Front
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Figure 3: Efficient frontiers of w*. The x-axis is the volatility level, and the y-axis is the
target return po. The solid line characterizes the curve of (u0,00), while the solid points

represent the points in the curve of (uo, ).
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Simulations: Efficient Frontier Estimation
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Optimization Over Q
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Interesting Questions

* Q1: Given the mazimum OOS Sharpe SRumax = V' X1, can
SR(Q) approach SRuyax? How to predetermine the structure of Q?

* Q2: Can we optimize Q from S/’R(Q) ¢ Define Q = argmaxq @(Q),

~

will the performance of SR(Q) be good?
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Answers of Q1

Theorem

Suppose that Assumptions 1-4 hold. Then for any given € > 0, there exists
deterministic sequences of matrices Q € RP*P such that with probability 1,

1—e< nll)l:IFloo SR(Q)/SRmax < 1.
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Answers of Q1

Theorem

Suppose that Assumptions 1-4 hold. Then for any given € > 0, there exists
deterministic sequences of matrices Q € RP*P such that with probability 1,

1—e< nll)l:IFloo SR(Q)/SRmax < 1.

Key of Proof: The existence of Q is proved by letting Q = C'X for some
constant C large enough.

Xuran Meng Estimation of OOS Sharpe July 8, 2025



Simulations: Different Structure of Q

@ Fix n = 1500, consider p = 750 (ratio ¢ = 1/2) and p = 2250 (ratio
c=3/2).

Q X =diag(\1,...,\p) +2- 11T, where {\;}}_, are generated from a
truncated I'~1(1, 1) distribution, truncated with the interval
[0.01,9], and then ranked in decreasing order.

@ ro=0,pu=+/5/p-(1(S4+) —1(S-)) € RP. S| and S_ are
randomly selected subsets of [p] with |S4| = [S_| = p/10 and
S+ U S_ - @

Q Let Qo = diag(3,...,3,1,...,1), where the numbers of 3 and 1
entries are both p/2. Define Qi = 0.1Qq + ¢ - diag(A1, ..., Ap);

Q2 = 0.5I, + ¢Qp and Q3 = ¢X. We will vary q.

@ Repeat 1000 times.
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Simulations: Different

1.02

Structure of Q

102 1025
100 L00 1000
o 098 o 0.98 0T
& g 3
2 E % 0.95
< 0.96 %096 5 0,950
3 = 2092
9
094 — srq | " — SR(Q) .
0.9 === SR 0.92 /”WW =77 Shua 0900 == SR
SR(Q) . SRQ) 0575 . SR
- @ | a0 ) @
] 3 3 i 5 [ ] i 3 3 i 3 3 ] T 3 13
Value of q Value of q

1.10

1.08

1.06

Value of SR

1.02

1.00

=Qi,c=1/2

(b)) Q=Q2,c=1/2

3
Value of q

(c) Q=Qs,c=1/2

L1 1.100
. 1075
o 105 .
& &
H 5 1050
3100 3
3 L0 =
— SRQ) — SR(Q) - — SRQ
- 2%* 0.95 - iﬁm" 1.000 77T Sl
SR(Q) - SRQ) « SRQ)
0.975
0 5 10 5 20 ] 5 10 15 20 0 5 10 5 %
Value of g Value of g Value of q

(d) Q= Qi c=3/2

() Q= Quc=3/2

(f) Q= Qs,c=3/2

Figure 5: Simulation results with different Q’s.
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of Q2 with Numerical Results

Table 1: Comparison for SR(Q) and S/’Y%(Q) The mean gives the average
value and the range gives the minimum and maximum values over the 20
independent trials.

Optimization over full Q

n, SRmax Py AP AP/
(n.p) mean of SR(Q) Range of SR(Q) mean of SR(Q) Range of SR(Q)

(500, 250) 0.923 0.643 [0.604,0.694] 1.299 [1.178,1.454]
(1000,500)  1.123 0.791 [0.738,0.824] 1.513 [1.406,1.578]

(n,p) SR Optimization over diagonal Q
P "% mean of SR(Q) Range of SR(Q) mean of SR(Q) Range of SR(Q)

(500,250) ~ 0.923 0.770 [0.715,0.818] 0.967 [0.909,1.056]
(1000,500)  1.123 0.944 [0.912,0.979] 1.146 [1.081,1.224]
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Answers of Q2 with Numerical Results

Table 1: Comparison for SR(Q) and S/’Y%(Q) The mean gives the average
value and the range gives the minimum and maximum values over the 20
independent trials.

(n,p) SR N Optimizzition over full 9\ R o
’ " mean of SR(Q) Range of SR(Q) mean of SR(Q) Range of SR(Q)
(500, 250) 0.923 0.643 [0.604,0.694] 1.299 [1.178,1.454]
(1000,500)  1.123 0.791 [0.738,0.824] 1.513 [1.406,1.578]
(n,p) SR R OptimizatioAn over diagonil\ QA o
' "% mean of SR(Q) Range of SR(Q) mean of SR(Q) Range of SR(Q)
(500,250) ~ 0.023 0.770 [0.715,0.818] 0.967 [0.900,1.056]
(1000,500)  1.123 0.944 [0.912,0.979] 1.146 [1.081,1.224]

Primary Reason: Q is overfitted to in-sample data, breaking down the

independence between S and Q.
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Assumptions

© There exists universal constants [, L > 0 such that for all Q € Q,
both SR(Q) and SR(Q) satisfy | < SR(Q), SR(Q) < L almost

surely for all n large enough.

@ There exists a sequence of bijections ¢, : B — Q, where B C RF is
a fixed compact set (independent of n) for some constant k& > 0.
Furthermore, the sequence {¢,} is equicontinuous with respect to
the operator norm: for any € > 0, there exists 6 > 0 (independent
of n) such that for all n and all a, @’ € B,

la—aa<0 = [én(a) = pn(e)]lop <.
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Assumptions

© There exists universal constants [, L > 0 such that for all Q € Q,
both SR(Q) and SR(Q) satisfy | < SR(Q), SR(Q) < L almost

surely for all n large enough.

@ There exists a sequence of bijections ¢, : B — Q, where B C RF is
a fixed compact set (independent of n) for some constant k& > 0.
Furthermore, the sequence {¢,} is equicontinuous with respect to
the operator norm: for any € > 0, there exists 6 > 0 (independent
of n) such that for all n and all a, @’ € B,

la—aa<0 = [én(a) = pn(e)]lop <.

Remark: Q9 is the candidate set for Q. A specific example for Q is
Pn(a) = a1Q1 + a2Q2 + - - - + 03, Qp where Qy, ..., Qy, are
predetermined matrices with ||Q;|/op bounded for all j, Q; are linearly
independent, and the coefficients o vary over a compact set in R¥.

Xuran Meng Estimation of OOS Sharpe July 8, 2025



Consistency Results for Optimal Q

Suppose that Assumptions 1-4 and 6-7 hold. Define
Q= argmaxge o @(Q)

It holds that

—

SR(Q)/SR(Q) 31, SR(Q) - SR(Q) %5 0.

Xuran Meng Estimation of OOS Sharpe July 8, 2025



Consistency Results for Optimal Q

Suppose that Assumptions 1-4 and 6-7 hold. Define
Q= argmaxge o @(Q)

It holds that

SR(Q)/SR(Q) “$ 1, SR(Q) - SR(Q) % 0.

Control of Overfitting Issues: When the search space for Q (Q) is well
behaved and restricted to a finite dimensional family, the overfitting issue can
be controlled, and the optimized candidate achieves consistent performance in
the large-sample limit.
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Extension 3:

Estimating with Sample Mean pu
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OOS Sharpe with Sample Mean 1

l5-Regularized-MV: Consider the optimization with regularization Q:

w"* = argming cpp w (E+Qw st w! =y,

where Q is positive definite. The optimal w* satisfies

w* o (Z4 Q).
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OOS Sharpe with Sample Mean g

l5-Regularized-MV: Consider the optimization with regularization Q:

w"* = argming cpp w (E+Qw st w! =y,
where Q is positive definite. The optimal w* satisfies
w* o (Z4 Q).

OOS Sharpe Ratio of w*:

SR(Q) = Eﬁ[W*T(ﬁ: rol)] AﬁT(i +Q)
YVargw TR -rol)]  \/AT(S+Q 1SS+ Q 1

Y

where R is an out-of-sample point with mean r = g + 791 and cov 3.
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Assumptions

@ Observed sample data R € R™*P gsatisfies
R=1,r" +X,

1 . ..
where X = Z¥2 € R™*P. The elements in Z € R™*P are i.i.d zero
mean, variance 1 Gaussian random variables.
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Sharpe Estimation with p

Theorem

Suppose Assumptions 2-4 and 8 hold. For any given Q, a good estimator
SR(Q) for SR(Q) is as follows.

AT S 15 tr(§+Q)_1§
12 (Z+Q) 12 n—tr(fl—&-Q)*lf: ) B C ~ ~

SR(Q) =
JATE+QsE+Q e P

If |=~2 |2 is bounded and uT(lst + Q) is lower bounded by some
constant, it holds that

SR(Q)/SR(Q) “3 1.
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Simulations: Sharpe Estimation with g

@ Fix n = 1500, consider p = 750 (ratio ¢ = 1/2) and p = 2250 (ratio
c=3/2).

Q X =diag(A1,...,Ap) +2- 117, where {A\:}Y_, are generated from a
truncated I'~1(1,1) distribution, truncated with the interval [0.01, 9],
and then ranked in decreasing order.

@ ro=0, po=+/5/p-(1(S4+) —1(S-)) e RP. S} and S_ are randomly
selected subsets of [p] with |Sy| =|S_| =p/10 and Sy US_ = 0. For ps,
we assume that each element follows an independent uniform

distribution, Unif(—+/2/p, v/2/D), pa = 3 + 2 - 1,,.
Q@ Qi =gq-diag(A1,...,Ap), Q2 = ¢X. We will vary q.
@ Repeat 1000 times.
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Simulations: Sharpe Estimation with g
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Real Data Experiments
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Real Data: Mean-Variance Portfolio

@ After deleting stocks with missing values, we have p = 365 stocks.

@ Portfolios are built using historical data spanning 1, 2, 4 years, and
rebalanced monthly.

@ Each allocation vector w* is held for the entire future testing month. We
then have returns of the portfolio w* in each trading day of the month.

@ For now, we use OOS average return as p in each testing month for
portfolio construction (known ).

@ Repeat the procedure in a rolling fashion for all testing months from Jan
2013 to Jun 2023 and record daily returns for each trading day.
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Real Data: Mean-Variance Portfolio

@ Consider two candidate sets. Q1 = {q - flpre, q € [1:30]/10}, where f]pre
represents the sample covariance pre-trained from 2004 to 2008, not
overlapping with data for portfolio construction and evaluation.

Qs ={q-1,,¢q € [1:30]/10}, where I, is the identity matrix.

@ Calculate sample cov S with 1,2,4-year historical data and construct the
regularized MV portfolio.

© For each testing month, we run experiments for all candidate ¢ values
and also consider no regularization, i.e. ¢ =0, where we have w o St
and X7 is the pseudo inverse, and the optimized ¢* € Q using our
estimator. Note that ¢* changes from month to month.

© We report the average Sharpe ratio of daily portfolio returns over the
future three years.
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Real Data: Mean-Variance Portfolio




Real Data: Global Minimum Variance Portfolio

Using future average returns as p is not feasible in practical portfolio
construction. One remedy approach is:

@ Consider GMV portfolio, which does not require the knowledge of p:
_ (Z+gq)™1
1T(E4qD)—11

Then we check which GMV portfolio attains the minimum OOS
empirical variance.
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Real Data: Global Minimum Variance Portfolio
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Real Data: Efficient Frontier

Q Set Q € Q; or Q € Qs as before. We vary p from 0.4 to 6 with an
increment of 0.4. For each g, carry out 2 to 5 below.

@ We build portfolio assuming no risk-free asset.

© Let r be the average return vector in the testing month. The optimal
portfolio is given by w* = g 4+ pgh. We run experiments for all ¢ values
in the candidate sets, the case of ¢ = 0 and the optimized ¢*, which is

(g+uoh) " S(g+uoh)
1—c/p-trE(X+4qI)—1)2

obtained by minimizing ( over all ¢’s.

© We monthly roll the procedure from Jan 2013 to Jun 2023 and collect

daily portfolio returns for each ¢ value.

@ We calculate the standard deviation of the daily returns for each ¢ value,
including ¢ = 0 and ¢ = ¢*, over the ten-year period.
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Real Data: Efficient Frontier
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Conclusion
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Concluding Remar

% Introduced a novel in-sample approach to estimate the out-of-sample Sharpe
ratio in high-dimensional portfolio optimization.

* Relaxed conditions allowing arbitrary diverging spikes when ¢ < 1 and K
diverging spikes when ¢ > 1.

% Extended to the estimation of efficient frontier when no risk-free asset.

* Used the OOS Sharpe estimator as objective to optimize the Ridge tuning
parameter cycle by cycle.

% Verified the performance of the estimator via extensive numerical experiments.
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Thank you!




