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Traditional 
Statistic  
Models

Inception V1: 
5 million


parameters

ResNet-152: 60M 
AlexNet: 61M 

VGG-16: 138M

BERT: 108M


Transformer: 340M

Modern Neural Networks are Over-parameterized



[1] Belkin, M., Hsu, D., Ma, S. and Mandal, S. Reconciling modern machine-learning practice and the classical 
bias–variance trade-off. PNAS. 2019. 
[2] Belkin, M., Hsu, D. and Xu, J. Two models of double descent for weak features. SIMODS. 2020.

Interesting Double Descent Phenomenon

Model Complexity  Number of Trainable Parameters∝



Interesting Double/Triple Descent Phenomenon

Aldam & Pennington. "The Neural Tangent Kernel in High Dimensions: Triple Descent and a Multi-Scale Theory of Generalization." ICML, 2020.



Always double descent?

?
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Multi-Component Prediction Models:

f(x) = f1(x) + f2(x) + . . . + fK(x),

where each  is an individual prediction models.fi(x)

‣ Ensemble methods

‣ Certain neural networks such as ResNet

What can we say about the risk curves of multi-component prediction models? 
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For any , there exists a -component prediction 

Model whose risk curve exhibits -fold descent.
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In the following, I will

first give some simple discussions and provide an intuitive explanation,

then give some technical details for : how triple descent can be

theoretically proved.

K = 2
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We aim to demonstrate that:

For any , there exists a -component prediction 

Model whose risk curve exhibits -fold descent.
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Classic random feature model: 
(Mei & Montanari, 2022)
ℱRF(Θ) = {f(x; a, Θ) ≡

N

∑
i=1

aiσ (⟨θi, x⟩/ d) : ai ∈ ℝ ∀i ∈ [N]}
σ

σ
̂y

θ a
⋮

⋮
⋮
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d N
σ

σ

x[1]

x[d]

: fixed at randomly generated valuesΘ

: trainable parametersa
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We aim to demonstrate that:

For any , there exists a -component prediction 

Model whose risk curve exhibits -fold descent.
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Multiple random feature model:

ℱMRF(Θ) = f(x; a, Θ) ≡
N1

∑
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We aim to demonstrate that:

For any , there exists a -component prediction 
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Multiple random feature model:

ℱMRF(Θ) = f(x; a, Θ) ≡
N1

∑
i=1

aiσ1 (⟨θi, x⟩/ d) +
N1+N2

∑
i=N1+1

aiσ2 (⟨θi, x⟩/ d) : ai ∈ ℝ ∀i ∈ [N]

: fixed at randomly generated valuesΘ

: trainable parametersa
(N1 + N2)/n

Motivation



From Double Descent to Multiple Descent
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From Double Descent to Multiple Descent

(N1 + N2 + N3)/n (N1 + N2 + N3 + N4)/n



Intuition of Multiple Descent in Multi-component Models
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Scale difference may be the key (consider the case ):N1 = N2

‣ If , double descent exists according to [Mei & Montanari, 2022], σ1( ⋅ ) = σ2( ⋅ )
and the peak is located at .(N1 + N2)/n = 1

‣ If  is very small compared with , we may also expect double descent 
according to [Mei & Montanari, 2022], and the peak is at .  

σ2( ⋅ ) σ1( ⋅ )
N1/n = 1 → (N1 + N2)/n = 2

(N1 + N2)/n



Intuition of Multiple Descent in Multi-component Models

Peak
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Scale difference may be the key (consider the case ):N1 = N2

An example for  and σ1( ⋅ ) = ReLU( ⋅ ) σ2( ⋅ ) = Sigmoid( ⋅ ) .

(N1 + N2)/n (N1 + N2)/n



Theoretical Demonstration of Triple Descent in DRFMs

Data distribution:

yi = x⊤
i βd + εi, i = 1,...,n, {xi ∼ Unif( d ⋅ 𝕊d−1)

εi ∼ 𝒩(0,τ2)

ℱDRF(Θ) = f(x; a, Θ) ≡
N1

∑
i=1

aiσ1 (⟨θi, x⟩/ d) +
N1+N2

∑
i=N1+1

aiσ2 (⟨θi, x⟩/ d) : ai ∈ ℝ ∀i ∈ [N]

: fixed at randomly generated valuesΘ

: trainable parametersa

Double random feature model



Ridge Regression & Limit of Excess Risk
Consider learning the coefficient vector  via the following loss function:a

â = arg min
a {1

n

n

∑
i=1

(yi − f(xi; a, Θ))2 +
d
n

λ∥a∥2
2},

where  is the regularization parameter. Moreover, define the excess riskλ > 0

Rd(X, Θ, λ, βd, ε) = 𝔼x∼Unif( d⋅𝕊d−1)(x⊤βd − f(x; â, Θ))2 .

Our goal: calculate
lim

N1/d = ψ1, N2/d = ψ2, n/d = ψ3

N1, N2, d, n → + ∞

Rd(X, Θ, λ, βd, ε)

and investigate how this limit changes with the ratios  when  is small.ψ1, ψ2, ψ3 λ
We collect  into the vector .ψ1, ψ2, ψ3 ψ



Main Assumption

Assumption 1: Let  be weakly differentiable, with a weak 

derivative . Assume  for some constants .

σj : ℝ → ℝ ( j = 1,2)
σ′￼j |σj(u) | ∨ |σ′￼j(u) | ≤ C0eC1|u| C0, C1 < + ∞

• For , we define


               ,     ,    .


The sphere moments are collected into the vector .

G ∼ N(0,1)
μj,0 = 𝔼{σj(G)} μj,1 = 𝔼{Gσj(G)} μ2

j,* = 𝔼{σ2
j (G)} − μ2

j,1 − μ2
j,0

μ

‣ Define spherical moments of .σj



Main Theory for Asymptotic Excess Risk
Theorem. Under Assumption 1, it holds that
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 and  are given as follows:
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ℛ(λ, ψ, μ,∥βd∥2, τ) = ∥βd∥2
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 and  are given as follows:
MD ∈ ℝ L ∈ ℝ4×4

(1) implicit functions  are defined as follows:
ν1(ξ), ν2(ξ), ν3(ξ) : ℂ+ → ℂ+

ν1 ⋅ (− ξ − μ2
1,*ν3 −

μ2
1,1ν3

1 − μ2
1,1ν1ν3 − μ2

2,1ν2ν3 ) = ψ1,

ν2 ⋅ (− ξ − μ2
2,*ν3 −
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2,1ν3

1 − μ2
1,1ν1ν3 − μ2

2,1ν2ν3 ) = ψ2,

ν3 ⋅ (− ξ − μ2
1,*ν1 − μ2

2,*ν2 −
μ2

1,1ν1 + μ2
2,1ν2

1 − μ2
1,1ν1ν3 − μ2

2,1ν2ν3 ) = ψ3 .

It can be proved that analytic 
’s exist and are unique.νj(ξ)
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M2
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+ L3,4 + L1,4) + τ2(L2,3 + L1,2) .

(2) define ,  Let 
ν*j = νj( λi) j = 1,2,3. MN = ν*1 μ2
1,1 + ν*2 μ2

2,1 , MD = ν*3 MN − 1.

H =

−
ν*2

3 μ4
1,1

M2
D

+ ψ1

ν*2
1

−
ν*2

3 μ2
1,1μ2

2,1

M2
D

−
μ2

1,1

M2
D

− μ2
1,*

* −
ν*2

3 μ4
2,1

M2
D

+ ψ2

ν*2
2

−
μ2

2,1

M2
D

− μ2
2,*

* * −
M2

N

M2
D

+
ψ3

ν*2
3

, V =

μ2
1,* 0

μ2
1,1

M2
D

ν*2
3 μ2

1,1

M2
D

μ2
2,* 0

μ2
2,1

M2
D

ν*2
3 μ2

2,1

M2
D

0 1
M2

N

M2
D

1
M2

D

,

(  is symmetric here). Define .H L = V⊤H−1V
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Theoretical Demonstration of Triple Descent
Proposition. For , it holds thatℛ(λ, ψ, μ,∥βd∥2, τ)

1 c2 1 + ψ2/ψ1
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Simulations
The scale difference of activation functions: 



Simulations
Impact of the ratio N1/N2

Peaks Location: 1 + N2/N1 (N1 + N2)/n = 3, 9/4, 11/6, 3/2.

N1/N2 = 0.5 N1/N2 = 0.8 N1/N2 = 1.2 N1/N2 = 2



Simulations
Multiple descent when .K > 2

quadruple descent quintuple descent
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Conclusions

‣ We demonstrate that risk curves with a specific number of descent generally exist 
in learning multi-component prediction models.

‣ We give an intuitive explanation of multiple descent and highlight that appropriate 
scale differences between the components may be the key.

‣ Our explanation of multiple descent can successfully predict the shapes and peak 
locations in simulations.

‣ We give rigorous theoretical demonstration of multiple descent under the setting 
of learning “multiple random feature models”.



Thank you!


